Меню

Метаболизм костной ткани анализ крови

Анализы > Определение в крови маркеров метаболизма костной ткани и остеопороза

Что такое маркеры метаболизма костной ткани и остеопороза?

Свыше 70 миллионов человек по всему миру страдают от остеопороза – тяжелого заболевания, при котором отмечается прогрессирующая потеря массы костной ткани с нарушением структуры костей. Проявляется эта патология особенной хрупкостью костей, повышенной вероятностью возникновения переломов.

Выявить остеопороз на ранней стадии и начать профилактику помогают специальные обследования по определению содержания в организме маркеров метаболизма (обменных процессов) костной ткани. Под этим понятием подразумевается комплекс из нескольких анализов, оценивающих два противоположных процесса – образование новой костной ткани и разрушение старой.

Существующее в норме равновесие между этими двумя процессами в организме взрослого человека обеспечивает нормальное состояние костей, так как количество образовавшейся новой ткани равно количеству разрушенной. Изучение маркеров позволяет оценить не только состояние костной системы, но и скорость потери костной массы при некоторых заболеваниях. Это исследование дает возможность провести оценку качества лечения остеопороза и оценить риск развития его у людей из группы риска.

Перечень показателей, используемых в качестве маркеров метаболизма костной ткани

В качестве маркеров выступают следующие биохимические показатели: остеокальцин, маркер образования костного матрикса P1NP, бета-CrossLaps и дезоксипиридинолин. Первые три показателя определяют в крови, а последний – в моче.

Маркер образования костного матрикса P1NP – это частичка белка коллагена, отщепляемая от него в процессе синтеза кости, то есть этот показатель свидетельствует об активности процесса образования костной ткани.

Бета-CrossLaps – продукт окончательного распада коллагена костей, то есть этот показатель отражает активность резорбции (распада) костной ткани.

Остеокальцин – особый белок костей, отвечающий за связывание коллагена и неорганической части костной ткани (кальция и гидроксиапатитов). При разрушении кости он активно всасывается в кровь и тем самым отражает скорость разрушения костной ткани.

Дезоксипиридинолин – особое вещество, отвечающее в костной ткани за соединение отдельных молекул коллагена. При разрушении костной ткани выделяется в кровоток и через почки поступает в мочу.

Как подготовиться к сдаче анализов для оценки состояния костной ткани?

Кровь следует сдавать утром в 9–10 часов после ночного периода голодания. Накануне не следует подвергаться стрессам и тяжелым физическим нагрузкам. Мочу на дезоксипиридинолин также лучше всего сдавать с утра, желательно в тот же день, что и кровь.

При осуществлении мониторинга эффективности лечения все пробы сдают в одно и то же время суток.

Какие врачи направляют на этот анализ?

Выяснять причины остеопороза и, соответственно, назначать эти анализы могут врачи-геронтологи, ревматологи, гинекологи, хирурги, эндокринологи. Биологический материал на анализ можно сдать в любой оснащенной необходимым оборудованием биохимической лаборатории.

Нормальные показатели, интерпретация результатов

Нормальной концентрацией в крови маркера P1NP считается уровень 10–80 нг/мл у женщин и 22–120 нг/мл у мужчин. Концентрация бета-CrossLaps в норме у женщин 15–55 лет не должна превышать 0,55 нг/мл, у женщин старше 55 – 1 нг/мл. У мужчин она должна быть не более 0,6–0,7 нг/мл. Остеокальцин в среднем – 70–300 нг/мл (для разных полов и возрастов есть свои референсные значения). Дезоксипиридинолин в моче взрослого человека – от 2,5 до 7 нмоль на каждый моль креатинина мочи.

Интерпретировать результаты анализов должен врач-специалист с учетом клинической картины заболевания. Повышение уровня этих показателей свидетельствует об остеопорозе, к которому могут привести многие патологические состояния, начиная от возрастных изменений и заканчивая метастатическим поражением костей.

Информация размещена на сайте только для ознакомления. Обязательно необходима консультация со специалистом.
Если вы нашли ошибку в тексте, некорректный отзыв или неправильную информацию в описании, то просим вас сообщать об этом администратору сайта.

Отзывы размещенные на данном сайте являются личным мнением лиц их написавших. Не занимайтесь самолечением!

источник

Анализ крови на маркеры остеопороза

Анализы крови

Общее описание

Остеопороз (ОП) — в наибольшей степени распространенная патология скелета, заключающаяся в неуклонном снижении массы костной ткани и нарушении ее микроархитектоники, которые в конечном итоге приводят к чрезмерной хрупкости костей и их переломам, зачастую без минимальных травмирующих усилий. Целью лабораторного распознавания ОП является поиск заболеваний, проявляющихся остеопенией, детекция причин вторичного ОП, а также метаболическая характеристика ОП, которая значима для верификации диагноза и подбора адекватной терапии с оценкой ее результативности.

Как проходит процедура?

Кровь берется из кубитальной вены утром, спустя 12 часов после крайнего приема пищи.

Подготовка к анализу

Накануне сдачи анализа не рекомендуется заниматься интенсивным физическим трудом и употреблять алкогольные напитки.

Маркер формирования костного матрикса

Маркер формирования костного матрикса (Total P1NP) — это маркер активности метаболизма костной ткани в организме человека. Total P1NP проникает в межклеточное пространство и кровоток в процессе синтеза коллагена I типа и встраивания его в матрикс кости, проявляя активность формирования костной ткани.

Норма маркера формирования костного матрикса
мужчины женщины
18–23 года:
0,5–107,4 нг/мл
24–30 лет:
22,5–120 нг/мл
старше 30 лет:
10,2–95,0 нг/мл
старше 14 лет:
8–80 нг/мл

Показания к назначению анализа:

  • терапия ОП анаболическими средствами;
  • антирезорбтивная терапия ОП;
  • лечение различных болезней костей.

Интерпретация результатов

Витамин D общий

Основная роль витамина D в организме связана с регуляцией обмена кальция. Адекватное содержание витамина D в организме снижает риск развития ряда онкологических заболеваний, сахарного диабета, рассеянного склероза, сердечно-сосудистых заболеваний, туберкулеза.

Норма витамина D общего
мужчины женщины
4,92–42,7 нг/мл 6,23–49,9 нг/мл

Показания к назначению анализа:

  • рахит;
  • ОП;
  • нутритивная недостаточность;
  • почечная остеодистрофия;
  • гипопаратиреоидизм;
  • остеопороз в постменопаузе;
  • беременность.

Интерпретация результатов

  • интоксикация витамином D;
  • чрезмерная инсоляция;
  • применение препарата этидроната динатрия внутрь.
  • рахит;
  • нутритивные нарушения;
  • синдром мальабсорбции;
  • стеаторея;
  • цирроз печени;
  • остеомаляция;
  • применение лекарственных препаратов (гидроксид алюминия, холестирамин, холестипол, этидронат динатрия внутривенно, глюкокортикоиды, изониазид, рифампицин);
  • почечная остеодистрофия;
  • кистозно-фиброзный остеит;
  • тиреотоксикоз;
  • панкреатическая недостаточность;
  • целиакия;
  • кишечная воспалительная патология;
  • резекция кишечника;
  • болезнь Альцгеймера.

Остеокальцин

Остеокальцин (ОК, GLA protein) — сенситивный маркер метаболизма костной ткани. Его концентрация в крови манифестирует метаболическую активность остеобластов костной ткани. GLA protein отражает уровень костного метаболизма в целом, служа прогностическим индикатором тяжести поражения костей. Кроме диагностики используется для мониторинга антирезорбтивной терапии у больных с остеопорозом.

Показания к назначению анализа:

  • ОП;
  • оценка результативности антирезорбтивной терапии у больных с ОП;
  • гиперкальцемический синдром.

Интерпретация результатов

  • ОП в постменопаузу;
  • остеомаляция;
  • первичный и вторичный гиперпаратиреоз;
  • болезнь Педжета;
  • почечная остеодистрофия;
  • метастазы в кости;
  • диффузный токсический зоб;
  • «бурный» рост у подростков;
  • хроническая почечная недостаточность.

Паратгормон

Паратгормон (ПТГ) — один из центральных регуляторов кальциево-фосфорного обмена, синтезируемый паращитовидными железами в ответ на уменьшение внеклеточной концентрации кальция. Активирует резорбцию костной ткани и приводит к поступлению кальция и фосфора в кровь.

Показания к назначению анализа:

  • гиперкальциемия;
  • гипокальциемия;
  • рентгено-позитивные камни в мочевыводящей системе;
  • остеопороз;
  • кисты в костях;
  • остеосклероз тел позвонков.
Норма паратгормона
возраст до 17 лет: 1,3–10 пмоль/л
возраст 17–70 лет: 0,7–5,6 пмоль/л
возраст старше 70 лет: 0,5–12,0 пмоль/л

Интерпретация результатов

  • аденома паращитовидных желез;
  • хронические заболевания почек;
  • синдром Золлингера-Эллисона;
  • псевдоподагра;
  • гиперпаратиреоз.
  • резекция щитовидной железы;
  • саркоидоз;
  • аутоиммунный тиреоидит;
  • повышенная функция щитовидной железы.

Щелочная фосфотаза крови

Щелочная фосфотаза (ЩФ) — это фермент, концентрирующийся в костной ткани (остеобластах), гепатоцитах, клетках почечных канальцев, слизистой кишечника и плаценте. Поскольку маркер костеобразования ЩФ участвует в процессах, связанных с ростом костей, ее активность у детей выше, нежели у взрослых.

Норма щелочной фосфотазы крови
мужчины женщины дети
до 270 Ед/л до 240 Ед/л до 600 Ед/л

Показания к назначению анализа:

  • появление симптомов холестаза;
  • прием медикаментов, вызывающих холестаз;
  • заболевания костной системы и оценка результативности ее терапии;
  • в комплексе печеночных тестов.

Интерпретация результатов

  • болезнь Педжета;
  • остеомаляция;
  • болезнь Гоше;
  • первичный или вторичный гиперпаратиреоз;
  • рахит;
  • консолидация переломов;
  • остеосаркомы;
  • костные метастазы;
  • патология печени и желчевыводящих путей широкого спектра;
  • недостаток кальция и фосфатов в пище;
  • цитомегалия у детей;
  • инфекционный мононуклеоз;
  • инфаркт легкого;
  • инфаркт почки;
  • физиологическое (у недоношенных, детей в период быстрого роста, у женщин в последнем триместре беременности и после менопаузы);
  • применение гепатотоксичных лекарственных средств.
  • наследственная гипофосфатаземия;
  • нарушения роста костного скелета;
  • гипотиреоз;
  • квашиоркор;
  • дефицит цинка и магния в пище;
  • применение лекарственных препаратов (эстрогенов, оральных контрацептивов, даназола, азатиоприна, клофибрата).

Пропептид коллагена 1-го типа

Пропептид коллагена 1-го типа (P1NP) — это органический матрикс кости, представленный, в основном, коллагеном 1 типа, который образуется из проколлагена 1 типа, синтезирующегося фибробластами и остеобластами. P1NP является одним из маркеров, манифестирующих активность формирования костной ткани.

Норма витамина D общего
мужчины женщины
18–23 года:
40,5–107,4 нг/мл
24–30 лет:
22,5–120 нг/мл
старше 30 лет:
10,2–95,0 нг/мл
старше 14 лет:
8–80 нг/мл

Показания к назначению анализа:

  • ОП;
  • остеомаляция;
  • гиперпаратироз;
  • несовершенный остеогенез;
  • болезнь Педжета;
  • ренальная остеопатия;
  • метастазы в кости.

Интерпретация результатов

  • ОП;
  • старческий остеопороз;
  • остеомаляция;
  • несовершенный остеогенез;
  • болезнь Педжета;
  • почечная остеодистрофия;
  • костные метастазы.

Продукты распада коллагена деоксипиридинолина

Деоксипиридонолин (ДПИД) — наиболее наглядный маркер резорбции кости, определяется в моче. Его выделение с мочой повышается при постменопаузальном остеопорозе, остеомаляции, тиреотоксикозе, первичном гиперпаратиреозе и т.д. Уровень ДПИД у детей, по причине высокой скорости костного метаболизма, значительно выше, нежели у взрослых.

Норма продуктов распада коллагена деоксипиридинолина
мужчины женщины дети
2,3–5,4 нмоль ДПИД/моль креатинина 3,0–7,4 нмоль ДПИД/моль креатинина 1,1–13,7 нмоль ДПИД/моль креатинина

Показания к назначению анализа:

  • ОП в постменопаузу;
  • первичный гиперпаратиреоз;
  • болезнь и синдром Кушинга;
  • длительное лечение глюкокортикоидными гормонами;
  • аллотрансплантация почки;
  • повышенный уровень тироксина;
  • метастазы в кости;
  • множественная миелома;
  • артрит.

Интерпретация результатов

  • гиперпаратиреоз;
  • гипертиреоз;
  • болезнь Педжета;
  • ОП;
  • остеоартриты;
  • ревматоидный артрит.
  • адекватное лечение вышеперечисленной патологии.

С-концевой телопептид коллагена I типа в крови

С-концевой телопептид коллагена I типа в крови (PICP) — продукт регресса коллагена 1 типа, который составляет более 90% органического матрикса кости. Детекцию этого маркера костной резорбции используют для диагностики и контроля эффективности терапии остеопороза, ревматоидного артрита, болезни Педжета, обменных остеопатиях, множественной миеломе, гиперпаратиреоидизме.

Норма витамина D общего
мужчины женщины
до 14 лет:
  • facebook
  • twitter
  • odnoklassniki
  • vkontakte
  • youtube
  • mail
  • Online диагноз
    © ООО «Интеллектуальные медицинские системы», 2012—2020 гг.
    Все права защищены. Информация сайта юридически защищена, копирование преследуется по закону.

    Размещение рекламы, сотрудничество: info@online-diagnos.ru

    Сайт не несет ответственность за содержание и достоверность размещенного пользователями на сайте контента, отзывы посетителей сайта. Материалы сайта носят исключительно информационно-ознакомительный характер. Содержание сайта не является заменой профессиональной консультации врача-специалиста, диагностики и/или лечения. Самолечение может быть опасно для здоровья!

    источник

    Метаболизм костной ткани и остеопороз

    Рассмотрены подходы к выбору средств для профилактики и лечения потерь костной ткани, восстановления ее структуры и качества. Применяемый препарат должен способствовать синтезу коллагена, формированию костного матрикса, его минерализации и, соответственно

    Approaches to selecting the methods of prevention and treatment of bone tissue losses, restoration of its structure and quality, were considered. The used preparation must contribute to collagen synthesis, formation of bone matrix, its mineralization, and, respectively, increase of the bone density and strength.

    Остеопороз (ОП) — прогрессирующее системное заболевание скелета, характеризующееся снижением костной массы и нарушением микроархитектоники (качества) костной ткани, что приводит к хрупкости костей и повышению риска переломов. ОП — самое распространенное заболевание костной ткани: остеопоротические переломы отмечается у половины всех женщин, находящихся в периоде постменопаузы, а также у мужчин старших возрастных групп [1]. Очевидно, что рано начатые активные профилактические мероприятия у значительной части населения могут существенно повлиять на распространенность, прогрессирование и исходы заболевания, а также снизить риск переломов. В связи с этим изучение различных лекарственных препаратов и методов, применяемых для профилактики ОП, приобретает особый смысл.

    Кость — специализированная разновидность соединительной ткани, состоящая из клеток и межклеточного вещества. В течение всей жизни основные функции костной ткани, такие как жесткость и гибкость, снижаются, поскольку с возрастом наблюдаются повреждение матрикса и потеря минералов. В противовес указанным проявлениям, в кости осуществляется ремоделирование — процесс, направленный на самостоятельное обновление и сохранение скелета как структурного и функционального органа.

    Основными клетками костной ткани, функциями которой регулируется гомеостаз кости, являются остеобласты, остеокласты и остеоциты. Основной функцией остеобластов является создание органического межклеточного матрикса кости, остеоида. Остеобласты синтезируют и выделяют в окружающую среду фибриллы коллагена, протеогликаны и гликозаминогликаны. Наряду с этим остеобласты активно синтезируют и выделяют во внеклеточное пространство значительное количество глицерофосфолипидов, способствующих связыванию Ca 2+ и участвующих в процессах минерализации. Клетки сообщаются между собой через десмосомы, которые позволяют проходить Ca 2+ и цАМФ. Они также обеспечивают непрерывный рост кристаллов гидроксиапатитов и выступают в качестве посредников при связывании минеральных кристаллов с белковой матрицей.

    В ходе формирования кости некоторые остеобласты оказываются замурованными в толщу матрикса и становятся остеоцитами. Остеоциты контактируют друг с другом через отростки, являются основными компонентами в сформировавшейся костной ткани. Основная функция остеоцитов — поддержание нормального состояния костного матрикса и баланса кальция и фосфора в организме.

    Остеокласты — клетки, выполняющие функцию разрушения кости; развиваются из стволовой кроветворной клетки и являются специализированными макрофагами. В процессе ремоделирования кости резорбтивный стимул запускает процесс привлечения остеокластов к участку кости. Прикрепившись к кости, остеокласты продуцируют множество протеолитических ферментов и формируют полость в кальцинированном матриксе. Таким образом, они осуществляют непрерывный процесс резорбции и обновления костной ткани, обеспечивая необходимый рост и развитие скелета, структуру, прочность и упругость.

    Важнейшим компонентом костной ткани является межклеточное вещество — уникальный комплекс органических и неорганических компонентов, заполняющих пространство между клетками. Минерализованный матрикс костной ткани поддерживает структуру скелета и под координирующим влиянием остеобластов и остеокластов обеспечивает резервуар как ионов, так и факторов роста, которые высвобождаются в процессе метаболизма.

    Органический межклеточный матрикс костной ткани представлен семейством коллагеновых белков. Состав кости необычен тем, что фактически в ней представлен только коллаген I типа (90%), хотя наряду с коллагеном I типа в кости все же присутствуют следы других типов коллагена, таких как V, XI, XII. Скорее всего, что эти типы коллагена принадлежат другим тканям, которые и находятся в костной ткани, но не входят в состав костного матрикса. Например, коллаген V типа обычно обнаруживается в сосудах, которые пронизывают кость. Коллаген XI типа находится в хрящевой ткани и может соответствовать остаткам кальцифицированного хряща. Коллагеновые фибриллы в кости строго ориентированы в соответствии с распределенной функциональной нагрузкой на кость, что обеспечивает упругость и эластичность кости. Веретенообразные и пластинчатые кристаллы гидроксиапатита находятся на коллагеновых волокнах, в их пределах и в окружающем пространстве. Как правило, они ориентированы в том же направлении, что и коллагеновые волокна.

    Неколлагеновая часть матрикса (10%) представлена основным веществом (витамин К-зависимыми глютамилпротеинами (остеокальцином), матричными протеинами, остеопонтином, остеонектином, фибронектином, фосфопротеидами, сиалопротеидами, а также протеогликанами).

    Минеральные вещества, которыми пропитан органический матрикс, представлены главным образом кристаллами гидроксиапатита Ca10(PO4)6(OH)2. Кроме того, в кости обнаружены ионы Mg 2+ , Na + , K + , SO4 2- , HCO 3- , гидроксильные и другие ионы, которые могут принимать участие в образовании кристаллов.

    Важно подчеркнуть, что ОП является результатом уменьшения органического матрикса кости, а вовсе не плохой кальцификацией костной ткани. При ОП существенно снижается скорость образования остеоида, необходимого для формирования кости. Поэтому при планировании профилактических мероприятий чрезвычайно важно учитывать потенциальную возможность препаратов, наряду с адекватной минерализацией, оказывать влияние на синтез органического матрикса.

    Разумеется, качественная структура и прочность кости, ее эффективное функционирование и своевременное самообновление возможны лишь при адекватной обеспеченности макро- и микроэлементами, которые, подобно кальцию и витамину D, принимают непосредственное участие в биохимических процессах костной ткани [2–5]. Магний, медь, цинк, марганец, бор, являясь кофакторами ферментов, регулируют синтез костного матрикса, его минерализацию, а также равномерный рост, гибкость и прочность костной ткани. Известно, что дефицит этих веществ замедляет формирование костной массы в детстве и подростковом возрасте, способствует ее ускоренной потере в пожилом возрасте. Соответственно, дефицит любого из известных минеральных веществ в организме препятствует успешной терапии и профилактике нарушений структуры кости [6, 7].

    Одним из основных минералов, играющих важную роль в формировании и поддержании структуры костной ткани, является кальций. Поскольку кальций не производится в организме, то для поддержания оптимальной концентрации он должен регулярно поступать извне. Причем желательно, чтобы его поступление в организм обеспечивалось за счет натуральных молочных продуктов, молока и его производных (кефира, простокваши, ряженки, йогурта, творога, сыра). Вместе с тем биодоступность кальция из пищи составляет порядка 30%, причем с высокой индивидуальной вариабельностью. Более того, у лиц пожилого возраста нередко имеет место непереносимость молочных продуктов, связанная со снижением концентрации лактазы в желудочном соке, что приводит к низкому потреблению кальция.

    Согласно эпидемиологическим исследованиям, среди женщин в возрасте старше 45 лет, проживающих в мегаполисах, непереносимость молока встречается с частотой 25,0–34,0%. При этом достаточное потребление кальция с продуктами питания имеет место менее чем у 5% женщин [8]. Фактически содержание кальция в пищевом рационе постменопаузальных женщин не соответствует рекомендованным нормам. Очевидно, что обеспечение должного уровня потребления кальция возможно лишь при условии дополнительного регулярного назначения медикаментозных препаратов.

    Витамин D — основной регулятор активной абсорбции кальция в организме. Витамин D относят к группе жирорастворимых витаминов. Хотя в отличие от всех других витаминов он биологически не активен. В активную, гормональную, форму он превращается за счет двухступенчатой метаболизации в организме и оказывает многообразные биологические эффекты за счет взаимодействия со специфическими рецепторами, локализованными в ядрах клеток тканей и органов. Другое дело — активный метаболит витамина D. Он действует как истинный гормон, хотя в научной литературе его традиционно называют витамином D [9, 10].

    Природная форма витамина D — витамин D2 (эргокальциферол) поступает в организм человека в относительно небольших количествах — не более 20–30% от потребности. В основном из злаковых растений, рыбьего жира, сливочного масла, маргарина, молока, яичного желтка и др. В организме витамин D2 метаболизируется с образованием производных, обладающих сходным с метаболитами витамина D3 действием.

    Еще одна природная форма витамина D — витамин D3, или холекальциферол, является ближайшим аналогом витамина D2, но его синтез мало зависит от поступления извне. Холекальциферол образуется в организме позвоночных животных, в том числе амфибий, рептилий, птиц и млекопитающих, в связи с чем играет значительно бóльшую роль в процессах жизнедеятельности человека, чем поступающий в небольших количествах с пищей витамин D2. В организме витамин D3 образуется из находящегося в дермальном слое кожи предшественника (7-дегидрохолестерина) под влиянием коротковолнового ультрафиолетового облучения спектра В (УФ–В/солнечного света, длина волны 290–315 нм) при температуре тела в результате фотохимической реакции раскрытия В-кольца стероидного ядра и термоизомеризации, характерной для секостероидов [9, 10].

    В последующем поступивший с пищей и/или образовавшийся в организме в процессе эндогенного синтеза витамин D подвергается реакции 25-гидроксилирования в печени. Важно, что гидроксилирование витамина D3 в печени представляет собой полностью субстратзависимый процесс, который протекает весьма быстро и ведет к повышению уровня 25(ОН)D в сыворотке крови. Уровень этого вещества отражает как образование витамина D в коже, так и его поступление с пищей, в связи с чем может использоваться как маркер статуса витамина D [9, 10].

    Вторая реакция гидроксилирования 25(ОН)D, с образованием наиболее важной, качественно и количественно значимой активной гормональной формы — 1a,25-дигидроксивитамина D3 (1α,25(ОН)2D3), называемой также D-гормоном, кальцитриолом, протекает уже в основном в почках, в клетках проксимальных отделов канальцев коры почек при участии фермента 1α-гидроксилазы (CYP27В1). Этот процесс строго регулируется рядом эндогенных и экзогенных факторов. Во-первых, регуляция синтеза 1a,25(ОН)2D3 в почках является непосредственной функцией паратиреоидного гормона (ПТГ), на концентрацию которого в крови, в свою очередь, по механизму обратной связи оказывают влияние как уровень самого активного метаболита витамина D3, так и концентрация кальция и фосфора в плазме крови. Во-вторых, активация синтеза 1a-гидроксилазы и реакции 1a-гидроксилирования зависит от половых гормонов (эстрогенов и андрогенов), кальцитонина, пролактина, гормона роста (через ИПФР-1) и др. В-третьих, ингибирующее влияние на активность 1a-гидроксилазы оказывают глюкокортикостероидные гормоны, 1α,25(ОН)2D3 и ряд его синтетических аналогов. Фактор роста из фибробластов (FGF23), секретируемый в клетках кости, вызывает образование натрий-фосфат-котранспортера, который действует в клетках почек и тонкого кишечника, оказывает тормозящее влияние на синтез 1,25-дигидроксивитамина D3. На метаболизм витамина D оказывают влияние и некоторые лекарственные средства, например, противоэпилептические препараты.

    Основными реакциями, в которых участвует D-гормон, являются абсорбция кальция в желудочно-кишечном тракте и его реабсорбция в почках. D-гормон усиливает кишечную абсорбцию кальция в тонком кишечнике за счет взаимодействия со специфическими РВD. Об эффективности данного механизма свидетельствует тот факт, что без участия витамина D лишь 10–15% пищевого кальция и 60% фосфора абсорбируются в кишечнике. Взаимодействие между 1a,25-дигидроксивитамином D3 и РВD повышает эффективность кишечной абсорбции Са 2+ до 30–40%, т. е. в 2–4 раза, а фосфора — до 80%. Сходные механизмы действия D-гормона лежат в основе осуществляемой под его влиянием реабсорбции Са 2+ в почках.

    В костях 1α,25(ОН)2D3 связывается с рецепторами на кость-формирующих клетках — остеобластах, вызывая повышение экспрессии ими лиганда рецептора активатора ядерного фактора кВ (RANKL). Рецептор-активатор ядерного фактора кВ (RANK), являющийся рецептором для RANKL, локализованным на преостеокластах, связывает RANKL, что вызывает быстрое созревание преостеокластов и их превращение в зрелые остеокласты. В процессах костного ремоделирования зрелые остеокласты резорбируют кость, что сопровождается выделением кальция и фосфора из минерального компонента (гидроксиапатита) и обеспечивает поддержание уровня кальция и фосфора в крови. В свою очередь, адекватный уровень кальция (Са 2+ ) и фосфора необходим для нормальной минерализации скелета [11–13].

    Многочисленные исследования показали, что назначение препаратов кальция и/или витамина D способствует уменьшению потери костной ткани [14–19]. У женщин в поздней постменопаузе с низким употреблением пищевого кальция прием кальция предотвращает потерю костной ткани в позвоночнике [20, 21]. В свою очередь, назначение добавок кальция лицам старше 60 лет приводит к снижению потери костной массы в области бедра среди белых мужчин и женщин в возрасте моложе 72 лет [22]. Эффект назначения цитрата кальция на минеральную плотность кости (МПК) у женщин в раннем (до 5 лет) и среднем (от 5 до 10 лет) постменопаузальном периоде в течение двух лет проявлялся в виде прироста МПК в поясничном отделе на 1%, наряду со значимым снижением МПК на 2,4% в группе, получавшей плацебо [23]. Метаанализ 9 рандомизированных клинических исследований с общей выборкой более 50 тыс. человек, в 6 из которых сравнивалось комбинированное лечение витамином D (400 или 700–800 МЕ/сут) и кальцием с группами плацебо или без лечения, продемонстрировал достоверное снижение риска перелома бедра на 18% (RR 0,82 [95% ДИ 0,71–0,94], р = 0,0005) и риска внепозвоночных переломов на 12% (RR 0,88 [95% ДИ 0,78–0,99], р = 0,036) в группах, получавших комбинированную терапию, по сравнению с группами без добавок [24]. В исследованиях, где применялся витамин D в дозе 700–800 МЕ/сут, эффект на риск перелома бедра был выше, чем при приеме 400 МЕ (21% и 18% соответственно). Соответственно, в исследованиях, в которых пациенты получали только витамин D или плацебо (4 РКИ с общей численностью 9083 пациента), не было получено снижения риска внепозвоночных переломов как при применении дозы 400 МЕ (RR 1,14 [95% ДИ 0,87–1,49]), так при использовании 700–800 МЕ (RR 1,04 [95% ДИ 0,75–1,46]), что подтверждает ранее представленные данные о том, что витамин D без добавления кальция не снижает риск переломов [24].

    Магний

    Известно, что 60–65% магния находится именно в скелете и от обеспеченности костей магнием зависит обмен кальция и витамина D. Являясь структурным компонентом значительного числа ферментов, магний образует кристаллы с фосфатами, принимает участие в росте и стабилизации кристалла гидроксиапатита — структурной единицы минерального компонента костной ткани [25, 26]. Магний регулирует секрецию паратгормона (ПГ), повышает чувствительность клеток-мишеней к ПГ и витамину D, стимулирует действие кальцитонина. Длительное во времени нарушение соотношения Mg/Ca в сторону дефицита магния сопровождается замедлением обменных процессов в кости. Специальные магний-дефицитные диеты, сопровождающиеся уменьшением сывороточной концентрации магния, способствуют системной потере костной массы, снижению толщины надкостницы, характерным изменениям провоспалительных маркеров и маркеров резорбции кости. Уже по истечении достаточно короткого срока (4 недели), магний-дефицитная диета приводит к значимому снижению содержания минеральных веществ кости (р

    М. И. Шупина, кандидат медицинских наук
    Г. И. Нечаева 1 , доктор медицинских наук, профессор
    Д. В. Шупин
    Е. В. Надей
    А. А. Семенкин,
    доктор медицинских наук, профессор

    ГБОУ ВПО ОмГМУ МЗ РФ, Омск

    источник