Меню

Техника выполнения общего анализа крови на гематологическом анализаторе

Техника выполнения общего анализа крови на гематологическом анализаторе

Забор крови, с последующим её исследованием производился у мужчин в возрасте от 20-ти до 35-ти лет, до и после физической нагрузки. В исследовании приняла участие группа из тридцати трёх человек, каждый из которой, после взятия пробы до физической нагрузки, проходил стандартную тренировку в течение часа. В таблице 3 сведены типы и продолжительность упражнений, которым подвергались все испытуемые.

Таблица 3 — типы физической нагрузки, применяемой в исследовании

Тренировка включала в себя 15 минут бега в нормальном темпе (один тридцатиметровый круг в минуту); выполнение комплекса упражнений (подтягивания, отжимания от пола, приседания) в течение 15 минут в ускоренном темпе (20 подтягиваний в минуту, 50 приседаний в минуту, 30 отжиманий в минуту); 30 минутный спарринг в нормальном темпе (20-25 бросков в минуту). По окончанию тренировки вновь бралась проба такого же объёма, у тех же испытуемых, что и до тренировки.

Техника проведения общего анализа крови

Основные этапы выполнения общего анализа крови:

2 приготовление мазков крови;

3 проведение анализов на гематологическом анализаторе;

6 подсчёт лейкоцитарной формулы.

Взятие материала. Кровь для исследования получили путём прокола четвёртого пальца левой руки обследуемого слева от срединной линии на некотором расстоянии от ногтя. В зависимости от толщины кожи глубина прокола составляет 2-3 мм. Обработанная кожа пальца высыхает несколько секунд. Цель этого «высыхания» — исключить растекание крови по пальцу, а также гемолитического воздействия антисептика на эритроциты. Скарификатор одноразового использования плотно зажимается между указательным и большим пальцами правой руки; производится прокол. Прокол произвели перпендикулярно рисунку кожных покровов пальца, так как в этом случае происходит повреждение нескольких капилляров, ход которых совпадает с ходом линий кожного рисунка. Учитываем, что разрез произведённый параллельно кожным линиям, спадается, что затрудняет забор крови. Первую, выступившую каплю крови удалили ватным тампоном, а последующие были взяты на исследование. Взятую кровь поместили в пронумерованные и обработанные раствором антикоагулянта. Трилоном-Б, пластиковые микрокюветы. На следующем рисунке показаны одноразовые пластиковые микрокюветы, более удобные и безопасные в использовании, чем стеклянные пробирки.

Все манипуляции связанные с забором крови проводились используя стерильные комплекты инструментов для взятия крови (капилляры Панченкова, предметные стёкла, скарификаторы и микрокюветы). Для каждого обследуемого использовалась индивидуальная пара перчаток и стерильных ватных укладок. Все манипуляции проводились в соответствии с требованиями приказа №165 МЗ РБ от 25.11.2002 г «О методах стерилизации и дезинфекции в медицинских учреждениях» [21].

Рисунок 1 — Микрокюветы с раствором антикоагулянта

Приготовление мазков крови. Для изготовления мазка крови использовались тщательно обезжиренные предметные стёкла. Мазок крови готовился шлифованным стеклом с идеально ровным краем, ширина которого была приблизительно на 2-3 мм уже предметного стекла. К куполу свеже выпущенной из прокола капли было сделано прикосновение предметным стеклом на расстоянии 1,5-2 см от его края, не касаясь кожи в месте прокола. Размер капли на стекле не менее 2-3 мм в диаметре. Шлифованным стеклом, приставленным к предметному под углом 45°, быстрым движением справа налево был сделан мазок. Критерием правильности выполненного мазка является его полупрозрачность и желтоватый цвет. Техника приготовления мазка крови представлена на следующем рисунке.

Рисунок 2 — Техника приготовления мазка крови

Проведение анализов на гематологическом анализаторе. Для исследований использовался гематологический анализатор SISMYX-500. Взятую кровь в миниёмкастях тщательно перемешали и поместили в загрузочную часть аппарата. Предварительно была проведена калибровка данного аппарата, которая заключалась в проведении полного анализа микрокюветы с дистиллированной водой. Определение параметров исследуемой крови протекает в автономном режиме, без непосредственного участия человека. По завершению цикла исследования сняли выданные аппаратом результаты [22].

Изображение аппарата SISMYX-500, и момента отбора пробы для анализа, представлены на рисунке 3.

Фиксация мазков крови. Данный этап предохраняет форменные элементы от содержащейся в красителях воды, под влиянием которой в не фиксированных мазках происходит гемолиз эритроцитов и изменяется морфология лейкоцитов.

Фиксатор также вызывает коагуляцию белков и тем самым закрепляет препарат на стекле. В качестве фиксирующей жидкости использовали раствор эозинметиленового синего по Май-Грюнвальду. Высушенные мазки опускались в широкогорлую банку с фиксатором на 3-5 минут. Далее пинцетом мазки были извлечены и высушены на воздухе.

Рисунок 3 — Гематологический анализатор SISMYX-500

Окраска мазков крови. Фиксированные сухие мазки поместили в контейнер, который опустили в кювету с рабочим раствором красителя и выдержали в нём экспозицию в 30 минут.

Затем, контейнер был перенесён в кювету с водопроводной водой, а затем в вертикальный штатив для сушки. В качестве красящего раствора был использован краситель по прописи Романовского-Гимзы. В состав красителя входят: азур-2 (смесь равных количеств азура-1 и метиленового синего) и эозин. Критериями правильности данной окраски являются розово-оранжевые гранулы эозинофилов, светло-розовый цвет эритроцитов, нейтрофильная зернистость фиолетового цвета.

Подсчёт лейкоцитарной формулы производят с помощью иммерсионной системы микроскопа с увеличением Ч630. Для работы используется специальное иммерсионное масло, каплю которого наносят на препарат. Удобный обзор препарата настраивают с помощью микро- и макровинтов. Для регистрации клеток при подсчёте лейкоцитарной формулы использовался счётчик лабораторный СЛ-1.

Это простейший арифмометр снабжённый клавишами, обозначенными буквами для подсчёта соответствующих видов лейкоцитов, изображён на рисунке 4.

Рисунок 4 — Счётчик лабораторный СЛ-1

Подсчёт лейкоцитов производился в тонкой части мазка, где эритроциты располагаются одиночно. Препарат просматривают по зигзагообразной линии («линии Меандра») в количестве 3-5 полей зрения. Когда сосчитано 100 клеток, счётчик издаёт характерный сигнал, что означает окончание подсчёта лейкограммы данного препарата. Подсчитывались только целые, не разрушенные клетки.

Статистическая обработка результатов исследования

Для оценки влияния физической нагрузки на состояние показателей периферической крови использовались результаты общего анализа крови до и после физической нагрузки.

В ходе исследования нами были вычислены среднее арифметическое, стандартное отклонение, стандартная ошибка, коэффициент вариации по продуктивности и устойчивости внимания, а также по показателям темпа выполнения.

Средняя арифметическая вычисляется по формуле:

где Xi — значение признака, варианта;

где x2 — сумма квадратов центральных отклонений, т. е. квадратов разностей между каждым значением и средней арифметической;

n — 1 — число степеней свободы, равное числу объектов в группе без одного.

Ошибка стандартного отклонения:

где у — стандартное отклонение;

м — средняя арифметическая.

В результате обработки полученного материала, был проведён статистический анализ, построены графики зависимости показателей концентрации гемоглобина, количества эритроцитов, лейкоцитов и тромбоцитов, от воздействующего на них фактора физической нагрузки, а также таблицы результатов дисперсионного анализа, для каждого из исследуемых показателей.

Статистическая обработка результатов исследований выполнена с использованием прикладных программ MS Excel 2007 и Statistica for Windows 6.0. Оценка достоверности различий осуществлялась на основе критерия Фишера. Влияние физической нагрузки на показатели крови оценено методом однофакторного дисперсионного [23].

источник

Гематологические анализаторы Устройство и характеристики

Гематологические анализаторы крови широко используются для исследований крови при диагностике и мониторинге заболеваний. Большинство представленных на рынке медицинского лабораторного оборудования автоматических гематологических анализаторов позволяют проводить полный клинический анализ крови с расчетом лейкоцитарной формулы. Сложные и дорогие анализаторы могут оценивать клеточную морфологию и фиксировать клеточные популяции при диагностике редких заболеваний крови.

Принцип работы гематологических анализаторов крови

В основе устройства автоматических гематологических анализаторов лежат три технологии:

  • Электрический импеданс
  • Проточная цитометрия
  • Флуоресцентная проточная цитометрия

Эти три метода предполагают использование химических реагентов, приводящих к лизису или изменения клеток для фиксации измеряемых параметров. Например, электрический импеданс позволяет дифференцировать эритроциты, лейкоциты и тромбоциты по объему. Добавление ядрообразующего агента, который сжимает лимфоциты больше, чем другие лейкоциты, позволяет дифференцировать объем лимфоцитов.

Электрический импеданс

Традиционным методом является метод электрического импеданса, иначе кондуктометрический или также называемый метод Коултера (Культера, Култера, Coulter) по имени его создателя. Этот метод/принцип используется практически во всех гематологических анализаторах.

Суть его состоит в том, что кровь пропускается между двумя электродами через отверстие настолько узкое, что через него может проходить только одна клетка. Импеданс или, проще говоря, проводимость среды изменяется по мере прохождения клеток через отверстие и это изменение пропорционально объему/размеру проходящих клеток. Данная зависимость и позволяет производить их дифференцированный подсчет.

Импедансный анализ позволяет выполнить клинический анализа крови с определением гранулоцитов, лимфоцитов и моноцитов, но он не позволяет различать гранулярные лейкоциты одинакового размера: эозинофилы, базофилы и нейтрофилы.

Скорость автоматического подсчета по данному методу в гематологических анализаторах составляет до 10000 клеток в секунду, и типичный анализ по импедансному методу может быть проведен менее чем за минуту.

Проточная цитометрия

Лазерная проточная цитометрия – более дорогостоящий метод по сравнению с импедансным, поскольку требует более дорогих реагентов, но он позволяет получать детальную картину морфологии клеток крови. Это лучший метод для определения лейкоцитарной пятикомпонентной формулы.

Суть метода состоит в том, что поток образца крови проходит через лазерный луч. Измеряется поглощение луча, а рассеянный свет измеряется под разными углами для определения зернистости, диаметра и внутренней сложности клетки. Это фактически те же самые морфологические характеристики клетки, которые можно определить вручную с помощью микроскопа.

Флуоресцентная проточная цитометрия

Добавление специальных флуоресцентных добавок позволяет расширить применение проточной цитометрии до возможности оценивать специфические популяции клеток. Флуоресцентные красители позволяют оценить соотношение ядро-плазма в каждой окрашенной клетке. Это используется для анализа тромбоцитов, зарождающихся эритроцитов и ретикулоцитов.

Обзор производителей гематологических анализаторов

Производители автоматических гематологических анализаторов крови объединяют в своих приборах эти три технологии с инновационным применением реагентов и методов обработки данных, создавая собственные технологии, каждая из которых имеет свои преимущества с точки зрения точности измерений, скорости их выполнения или набора параметров.

В приборах ADVIA ® фирмы Siemens используется образец пероксидазы для дифференцированного тестирования. С его помощью выполняется самотестирование прибора (внутренний QC тест).

Метод лаурилсульфата натрия, используемый в приборах фирмы Sysmex при определении гемоглобина является нецианидным методом и имеет очень короткое время реакции. Гемоглобин определяется в отдельном канале, при этом минимизируется влияние высоких концентраций лейкоцитов.

Анализатор CELL-DYN Sapphire ® от Abbott использует трехцветную флуоресценцию в сочетании с запатентованной технологией Multiangle Polarized Scatter Separation для обеспечения высочайшей точности при определении лейкоцитарной формулы за счет идентификации клеток с использованием четырех углов рассеяния света.

Что следует учитывать при покупке гематологического анализатора?

Выбор подходящего инструмента будет зависеть от того, где его предполагается использовать: возле постели пациента (прикроватный), в лаборатории для экспресс-диагностики, крупной клинической лаборатории или в исследовательском медицинском учреждении. Разумеется, нужно помнить, что оборудование, используемое в клинических целях, должно иметь соответствующие сертификаты.

Основные характеристики гематологических анализаторов

Вот те параметры, которые необходимо тщательно проанализировать перед тем, как делать выбор:

источник

Техника выполнения общего анализа крови на гематологическом анализаторе

Забор крови, с последующим её исследованием производился у мужчин в возрасте от 20-ти до 35-ти лет, до и после физической нагрузки. В исследовании приняла участие группа из тридцати трёх человек, каждый из которой, после взятия пробы до физической нагрузки, проходил стандартную тренировку в течение часа. В таблице 3 сведены типы и продолжительность упражнений, которым подвергались все испытуемые.

Таблица 3 — типы физической нагрузки, применяемой в исследовании

Тренировка включала в себя 15 минут бега в нормальном темпе (один тридцатиметровый круг в минуту); выполнение комплекса упражнений (подтягивания, отжимания от пола, приседания) в течение 15 минут в ускоренном темпе (20 подтягиваний в минуту, 50 приседаний в минуту, 30 отжиманий в минуту); 30 минутный спарринг в нормальном темпе (20-25 бросков в минуту). По окончанию тренировки вновь бралась проба такого же объёма, у тех же испытуемых, что и до тренировки.

Основные этапы выполнения общего анализа крови:

2 приготовление мазков крови;

3 проведение анализов на гематологическом анализаторе;

6 подсчёт лейкоцитарной формулы.

Взятие материала. Кровь для исследования получили путём прокола четвёртого пальца левой руки обследуемого слева от срединной линии на некотором расстоянии от ногтя. В зависимости от толщины кожи глубина прокола составляет 2-3 мм. Обработанная кожа пальца высыхает несколько секунд. Цель этого «высыхания» — исключить растекание крови по пальцу, а также гемолитического воздействия антисептика на эритроциты. Скарификатор одноразового использования плотно зажимается между указательным и большим пальцами правой руки; производится прокол. Прокол произвели перпендикулярно рисунку кожных покровов пальца, так как в этом случае происходит повреждение нескольких капилляров, ход которых совпадает с ходом линий кожного рисунка. Учитываем, что разрез произведённый параллельно кожным линиям, спадается, что затрудняет забор крови. Первую, выступившую каплю крови удалили ватным тампоном, а последующие были взяты на исследование. Взятую кровь поместили в пронумерованные и обработанные раствором антикоагулянта. Трилоном-Б, пластиковые микрокюветы. На следующем рисунке показаны одноразовые пластиковые микрокюветы, более удобные и безопасные в использовании, чем стеклянные пробирки.

Все манипуляции связанные с забором крови проводились используя стерильные комплекты инструментов для взятия крови (капилляры Панченкова, предметные стёкла, скарификаторы и микрокюветы). Для каждого обследуемого использовалась индивидуальная пара перчаток и стерильных ватных укладок. Все манипуляции проводились в соответствии с требованиями приказа №165 МЗ РБ от 25.11.2002 г «О методах стерилизации и дезинфекции в медицинских учреждениях» [21].

Рисунок 1 — Микрокюветы с раствором антикоагулянта

Приготовление мазков крови. Для изготовления мазка крови использовались тщательно обезжиренные предметные стёкла. Мазок крови готовился шлифованным стеклом с идеально ровным краем, ширина которого была приблизительно на 2-3 мм уже предметного стекла. К куполу свеже выпущенной из прокола капли было сделано прикосновение предметным стеклом на расстоянии 1,5-2 см от его края, не касаясь кожи в месте прокола. Размер капли на стекле не менее 2-3 мм в диаметре. Шлифованным стеклом, приставленным к предметному под углом 45°, быстрым движением справа налево был сделан мазок. Критерием правильности выполненного мазка является его полупрозрачность и желтоватый цвет. Техника приготовления мазка крови представлена на следующем рисунке.

Рисунок 2 — Техника приготовления мазка крови

Проведение анализов на гематологическом анализаторе. Для исследований использовался гематологический анализатор SISMYX-500. Взятую кровь в миниёмкастях тщательно перемешали и поместили в загрузочную часть аппарата. Предварительно была проведена калибровка данного аппарата, которая заключалась в проведении полного анализа микрокюветы с дистиллированной водой. Определение параметров исследуемой крови протекает в автономном режиме, без непосредственного участия человека. По завершению цикла исследования сняли выданные аппаратом результаты [22].

Изображение аппарата SISMYX-500, и момента отбора пробы для анализа, представлены на рисунке 3.

Фиксация мазков крови. Данный этап предохраняет форменные элементы от содержащейся в красителях воды, под влиянием которой в не фиксированных мазках происходит гемолиз эритроцитов и изменяется морфология лейкоцитов.

Фиксатор также вызывает коагуляцию белков и тем самым закрепляет препарат на стекле. В качестве фиксирующей жидкости использовали раствор эозинметиленового синего по Май-Грюнвальду. Высушенные мазки опускались в широкогорлую банку с фиксатором на 3-5 минут. Далее пинцетом мазки были извлечены и высушены на воздухе.

Рисунок 3 — Гематологический анализатор SISMYX-500

Окраска мазков крови. Фиксированные сухие мазки поместили в контейнер, который опустили в кювету с рабочим раствором красителя и выдержали в нём экспозицию в 30 минут.

Затем, контейнер был перенесён в кювету с водопроводной водой, а затем в вертикальный штатив для сушки. В качестве красящего раствора был использован краситель по прописи Романовского-Гимзы. В состав красителя входят: азур-2 (смесь равных количеств азура-1 и метиленового синего) и эозин. Критериями правильности данной окраски являются розово-оранжевые гранулы эозинофилов, светло-розовый цвет эритроцитов, нейтрофильная зернистость фиолетового цвета.

Подсчёт лейкоцитарной формулы производят с помощью иммерсионной системы микроскопа с увеличением Ч630. Для работы используется специальное иммерсионное масло, каплю которого наносят на препарат. Удобный обзор препарата настраивают с помощью микро- и макровинтов. Для регистрации клеток при подсчёте лейкоцитарной формулы использовался счётчик лабораторный СЛ-1.

Это простейший арифмометр снабжённый клавишами, обозначенными буквами для подсчёта соответствующих видов лейкоцитов, изображён на рисунке 4.

Рисунок 4 — Счётчик лабораторный СЛ-1

Подсчёт лейкоцитов производился в тонкой части мазка, где эритроциты располагаются одиночно. Препарат просматривают по зигзагообразной линии («линии Меандра») в количестве 3-5 полей зрения. Когда сосчитано 100 клеток, счётчик издаёт характерный сигнал, что означает окончание подсчёта лейкограммы данного препарата. Подсчитывались только целые, не разрушенные клетки.

Для оценки влияния физической нагрузки на состояние показателей периферической крови использовались результаты общего анализа крови до и после физической нагрузки.

В ходе исследования нами были вычислены среднее арифметическое, стандартное отклонение, стандартная ошибка, коэффициент вариации по продуктивности и устойчивости внимания, а также по показателям темпа выполнения.

Средняя арифметическая вычисляется по формуле:

где Xi — значение признака, варианта;

где x2 — сумма квадратов центральных отклонений, т. е. квадратов разностей между каждым значением и средней арифметической;

n — 1 — число степеней свободы, равное числу объектов в группе без одного.

Ошибка стандартного отклонения:

где у — стандартное отклонение;

м — средняя арифметическая.

В результате обработки полученного материала, был проведён статистический анализ, построены графики зависимости показателей концентрации гемоглобина, количества эритроцитов, лейкоцитов и тромбоцитов, от воздействующего на них фактора физической нагрузки, а также таблицы результатов дисперсионного анализа, для каждого из исследуемых показателей.

Статистическая обработка результатов исследований выполнена с использованием прикладных программ MS Excel 2007 и Statistica for Windows 6.0. Оценка достоверности различий осуществлялась на основе критерия Фишера. Влияние физической нагрузки на показатели крови оценено методом однофакторного дисперсионного [23].

В настоящее время, рациональное использование лабораторного оборудования, поступающего в рамках Национального проекта, возможно, только при достаточной подготовленности врачей первичного звена здравоохранения и всех врачей клинических дисциплин к правильной трактовке получаемых результатов лабораторного исследования.

5.1 Преимуществами автоматического анализа крови :

-высокая производительность (до 100 и более проб в час),

Читайте также:  Техника взятия крови на биохимический анализ видео

-небольшой объем крови (12-50 мкл),

-оценка более 20 показателей, вместо 10-12 при обычном анализе крови,

-внедрение в практику лабораторных исследований новых показателей, существенно расширяющих возможности диагностики,

-графическое представление распределения клеток (гистограммы, скетограммы),

-высокая точность исследования, так как подсчету подвергаются несколько тысяч клеток из одной пробы.

Оценивать результаты исследо­ваний крови, полученные на гемато­логическом анализаторе, необходи­мо в контексте с клиническими данными и состоянием больного. Следует помнить, что изменения клеточного состава могут наблю­даться, как при различных физио­логических состояниях организма, так и вследствие проводимых лечеб­ных и диагностических воздействий, оперативных вмешательств, лекар­ственного лечения, а также следует учитывать тяжесть процесса, реак­тивность больного, сопутствующие осложнения.
5.2 Контроль преаналитических факторов в гематологических исследованиях является ключевым для обеспечения качественных результатов тестов.

акие преаналитические характеристики, как взятие пробы, транспортировка и хранение образца, влияние лекарственных препаратов, а также факторы, связанные с подготовкой пациента, могут привести к неверным или неточным результатам анализов и, следовательно, к постановке ошибочного диагноза, что может повлечь за собой риск для здоровья пациента. Снижение числа ошибок на любой стадии преаналитического этапа может существенно улучшить качество гематологических анализов, снизить количество повторных проб и сократить расходы рабочего времени и средств, выделяемых на обследование пациентов. Одна из задач, стоящих перед врачом-клиницистом довести до сведения пациента правила подготовки к взятию крови и обеспечить правильность взятия крови процедурными медицинскими сестрами в отделениях.

При плановом назначении лабораторного теста кровь следует брать натощак (после примерно 12 ч голодания, воздержания от приема алкоголя и курения), между 7 и 9 ч утра, при минимальной физической активности непосредственно перед взятием (в течение 20—30 мин), в положении пациента лежа или сидя.

Лучшим материалом для клинического исследования крови является венозная кровь. Это обусловлено тем, что при известной стандартизации процессов взятия, хранения, транспортировки крови удается добиться минимальной травматизации и активации клеток, примеси других веществ (тканевой жидкости), при этом всегда имеется возможность повторить и/или расширить анализ (например, добавить исследование ретикулоцитов).

Взятие венозной крови облегчается применением закрытых вакуумных систем. Метод взятия крови с помощью закрытых вакуумных систем имеет ряд преимуществ, основными из которых являются обеспечение высокого качества пробы и предотвращение любого контакта с кровью пациента, а значит, обеспечение безопасности медицинского персонала и других пациентов.

Пункция кожи с целью получения капиллярной крови является процедурой выбора, если требуется взять небольшое количество крови. Для гематологических исследований капиллярную кровь рекомендуется брать в следующих случаях: при ожогах, занимающих большую площадь поверхности тела пациента; при наличии у пациента мелких или труднодоступных вен; при выраженном ожирении пациента; при установленной склонности к венозному тромбозу; у новорожденных.

При трактовке результатов исследований проведенных на гематологическом анализаторе мы рекомендуем пользоваться принятыми в Российской Федерации нормами (табл. 1). Весьма желательно, чтобы во все гематологические анализаторы были введены именно эти показатели нормальной гемограммы.

Таблица 1.
Нормальные показатели периферической крови у взрослых

Показатель Нормальные значения
мужчины женщины
RBC, эритроциты х 10 12 /л 4,0-5,0 3,9-4,7
HGB, гемоглобин, г/л 130,0-160,0 120,0-140,0
НСТ, гематокрит,% 40-48 36-42
MCV, средний объем эритроцита, фл, мкм 3 80,0-100,0
MCH, cреднее содержание гемоглобина в эритроците, пг 27,0-31,0
MCHC, средняя концентрация % гемоглобина в эритроците, г/л 30,0-38,0 300 — 380
RDW, ширина распределения RBC по объему 11,5-14,5%
Ретикулоциты,‰ 2,0-10,0
WBC, лейкоциты х 10 9 /л 4,0-9,0
Нейтрофилы, %,(10 9 /л):палочкоядерные сегментоядерные 1,0-6,0 (0,040-0,300) 47,0-72,0 (2,000-5,500)
Эозинофилы %,(10 9 /л) 0,5-5,0 (0,020-0,300)
Базофилы %,(10 9 /л) 0-1,0 (0-0,065)
Лимфоциты %,(10 9 /л) 19,0-37,0 (1,200-3,000)
Моноциты %,(10 9 /л) 3,0-11,0 (0,090-0,600)
Плазматические клетки
Тромбоциты х 10 9 /л 180,0-320,0
СОЭ, мм/час 2,0-10,0 2,0-15,0

Само исследование крови в гематологических анализаторах имеет ряд особенностей. Так перед анализом вся кровь разделяется на две части.

5.3Первая часть разводится дилюентом и происходит подсчет всех клеток содержащихся в растворе.Клетки объемом менее 30 фл подсчитываются и рассматриваются как тромбоциты, все остальные клетки – как эритроциты. Поскольку размеры лейкоцитов близки к размерам эритроцитов, разделить их не удается. При использовании кондуктометрических счетчиков в подсчет эритроцитов неизбежно будут входить лейкоциты. Таким образом, в анализе гематологического анализатора в графе эритроциты (RBC), практически оказывается сумма RBC и лейкоцитов (WBC). Однако, за исключением явных лей­коцитозов, их вклад будет чрезвычайно мал, так как в норме концентрация эритроцитов в крови на 3 порядка превышает концентрацию лейкоцитов.

Например, при содержании RBC 5 х10 12 /л и WBC 5х10 9 л анализатор определит общее количество RBC – 5,005 х10 12 /л и ошибка составит всего 0,1%, что значительно ниже, чем ошибка самого прибора.

Только, при значительном увеличении числа WBC ошибка подсчета RBC прогрессивно нарастает, а при лейкоцитозе более 50*10 9 /л может искажаться и показатель объема эритроцитов (MCV).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8314 — | 7943 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Гематологические анализаторы крови широко используются для исследований крови при диагностике и мониторинге заболеваний. Большинство представленных на рынке медицинского лабораторного оборудования автоматических гематологических анализаторов позволяют проводить полный клинический анализ крови с расчетом лейкоцитарной формулы. Сложные и дорогие анализаторы могут оценивать клеточную морфологию и фиксировать клеточные популяции при диагностике редких заболеваний крови.

В основе устройства автоматических гематологических анализаторов лежат три технологии:

  • Электрический импеданс
  • Проточная цитометрия
  • Флуоресцентная проточная цитометрия

Эти три метода предполагают использование химических реагентов, приводящих к лизису или изменения клеток для фиксации измеряемых параметров. Например, электрический импеданс позволяет дифференцировать эритроциты, лейкоциты и тромбоциты по объему. Добавление ядрообразующего агента, который сжимает лимфоциты больше, чем другие лейкоциты, позволяет дифференцировать объем лимфоцитов.

Электрический импеданс

Традиционным методом является метод электрического импеданса, иначе кондуктометрический или также называемый метод Коултера (Культера, Култера, Coulter) по имени его создателя. Этот метод/принцип используется практически во всех гематологических анализаторах.

Суть его состоит в том, что кровь пропускается между двумя электродами через отверстие настолько узкое, что через него может проходить только одна клетка. Импеданс или, проще говоря, проводимость среды изменяется по мере прохождения клеток через отверстие и это изменение пропорционально объему/размеру проходящих клеток. Данная зависимость и позволяет производить их дифференцированный подсчет.

Импедансный анализ позволяет выполнить клинический анализа крови с определением гранулоцитов, лимфоцитов и моноцитов, но он не позволяет различать гранулярные лейкоциты одинакового размера: эозинофилы, базофилы и нейтрофилы.

Скорость автоматического подсчета по данному методу в гематологических анализаторах составляет до 10000 клеток в секунду, и типичный анализ по импедансному методу может быть проведен менее чем за минуту.

Проточная цитометрия

Лазерная проточная цитометрия – более дорогостоящий метод по сравнению с импедансным, поскольку требует более дорогих реагентов, но он позволяет получать детальную картину морфологии клеток крови. Это лучший метод для определения лейкоцитарной пятикомпонентной формулы.

Суть метода состоит в том, что поток образца крови проходит через лазерный луч. Измеряется поглощение луча, а рассеянный свет измеряется под разными углами для определения зернистости, диаметра и внутренней сложности клетки. Это фактически те же самые морфологические характеристики клетки, которые можно определить вручную с помощью микроскопа.

Флуоресцентная проточная цитометрия

Добавление специальных флуоресцентных добавок позволяет расширить применение проточной цитометрии до возможности оценивать специфические популяции клеток. Флуоресцентные красители позволяют оценить соотношение ядро-плазма в каждой окрашенной клетке. Это используется для анализа тромбоцитов, зарождающихся эритроцитов и ретикулоцитов.

Производители автоматических гематологических анализаторов крови объединяют в своих приборах эти три технологии с инновационным применением реагентов и методов обработки данных, создавая собственные технологии, каждая из которых имеет свои преимущества с точки зрения точности измерений, скорости их выполнения или набора параметров.

В приборах ADVIA ® фирмы Siemens используется образец пероксидазы для дифференцированного тестирования. С его помощью выполняется самотестирование прибора (внутренний QC тест).

Метод лаурилсульфата натрия, используемый в приборах фирмы Sysmex при определении гемоглобина является нецианидным методом и имеет очень короткое время реакции. Гемоглобин определяется в отдельном канале, при этом минимизируется влияние высоких концентраций лейкоцитов.

Анализатор CELL-DYN Sapphire ® от Abbott использует трехцветную флуоресценцию в сочетании с запатентованной технологией Multiangle Polarized Scatter Separation для обеспечения высочайшей точности при определении лейкоцитарной формулы за счет идентификации клеток с использованием четырех углов рассеяния света.

Что следует учитывать при покупке гематологического анализатора?

Выбор подходящего инструмента будет зависеть от того, где его предполагается использовать: возле постели пациента (прикроватный), в лаборатории для экспресс-диагностики, крупной клинической лаборатории или в исследовательском медицинском учреждении. Разумеется, нужно помнить, что оборудование, используемое в клинических целях, должно иметь соответствующие сертификаты.

Вот те параметры, которые необходимо тщательно проанализировать перед тем, как делать выбор:

Документ по состоянию на август 2014 г.

Утверждаю
Заместитель Министра
здравоохранения и социального
развития Российской Федерации
Р.А.ХАЛЬФИН
21 марта 2007 г. N 2050-РХ

В эру использования современных технологий автоматизированного анализа крови стало реальным предоставлять значительно больше клинической информации о состоянии кроветворной системы и реагировании ее на различные внешние и внутренние факторы. Анализ результатов исследования крови составляет неотъемлемое звено в диагностическом процессе и последующем мониторинге на фоне проводимой терапии.

Высокотехнологические гематологические анализаторы способны измерять более 32 параметров крови, осуществлять полный дифференцированный подсчет лейкоцитов по 5-ти основным популяциям: нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты, что делает возможным в случае отсутствия от референсных значений этих показателей не проводить ручной подсчет лейкоцитарной формулы.

Аналитические возможности гематологических анализаторов:

высокая производительность (до 100 — 120 проб в час)

небольшой объем крови для анализа (12 — 150 мкл)

анализ большого количества (десятки тысяч) клеток

высокая точность и воспроизводимость

оценка 18 — 30 и более параметров одновременно

графическое представление результатов исследований в виде гистограмм, скатерограмм.

Гематологические анализаторы имеют систему обозначения — флаги или «сигналы тревоги» — указывающую на отклонение параметров от установленных границ. Они могут касаться как увеличения или уменьшения количества тех или иных клеток, так и изменения их функционального состояния, которое отражается на характеристиках измеряемых прибором клеток. Во всех этих случаях необходим строгий визуальный контроль окрашенных препаратов с соответствующими комментариями.

Диагностические возможности гематологических анализаторов:

оценка состояния гемопоэза

диагностика и дифференциальная диагностика анемий

диагностика воспалительных заболеваний

оценка эффективности проводимой терапии

мониторинг за мобилизацией стволовых клеток из костного мозга.

Несмотря на все достоинства, даже самые современные гематологические анализаторы обладают некоторыми ограничениями, которые касаются точной морфологической оценки патологических клеток (например, при лейкозах), и не в состоянии полностью заменить световую микроскопию.

Контроль преаналитических факторов в гематологических исследованиях является ключевым для обеспечения качественных результатов тестов. Отклонения от стандартов при взятии пробы, транспортировке и хранении образца, интерферирующие вещества, а также факторы, связанные с пациентом, могут привести к неверным или неточным результатам анализов и, следовательно, к постановке ошибочного диагноза. До 70% лабораторных ошибок связаны именно с преаналитическим этапом исследования крови. За счет снижения числа ошибок на любом этапе преаналитической подготовки можно существенно улучшить качество гематологических анализов, снизить количество повторных проб, сократить расходы рабочего времени и средств на обследование пациентов.

Снижение до минимума возможных ошибок и обеспечение высокого качества гематологических исследований возможно за счет стандартизации преаналитического и аналитического этапов работы.

На точность и правильность результатов оказывает влияние техника взятия крови, используемые при этом инструменты (иглы, скарификаторы и др.), а также пробирки, в которые берется, а в последующем хранится и транспортируется кровь.

— Кровь для клинического анализа берут у пациента из пальца, вены или из мочки уха, у новорожденных — из пятки.

— Кровь следует брать натощак (после примерно 12 часов голодания, воздержания от приема алкоголя и курения), между 7 и 9 часами утра, при минимальной физической активности непосредственно перед взятием (в течение 20 — 30 мин.), в положении пациента лежа или сидя.

— Взятие материала следует проводить в резиновых перчатках, соблюдая правила асептики.

Венозная кровь. Венозная кровь считается лучшим материалом для клинического исследования крови. При известной стандартизации процессов взятия, хранения, транспортировки венозной крови удается добиться минимальной травматизации и активации клеток, примеси тканевой жидкости, при этом всегда имеется возможность повторить и/или расширить анализ, например, добавив исследование ретикулоцитов.

Достоверность и точность гематологических исследований, проводимых из венозной крови, во многом определяется техникой взятия крови.

Подготовка пациента к взятию крови из вены включает несколько этапов. Место венепункции нужно продезинфицировать марлевой салфеткой или специальной безворсовой салфеткой, смоченной 70° спиртом, и подождать до полного высыхания антисептика (30 — 60 секунд). Применение ватных тампонов и других волокнистых материалов подобного рода может привести к засорению волокнами счетной и гемоглобиновой камер, что влечет снижение точности и воспроизводимости измерения. Не рекомендуется использовать 96° спирт, так как он дубит кожу, поры кожи закрываются, и стерилизация может быть неполной.

Не рекомендуется вытирать и обдувать место прокола, пальпировать вену после обработки. Рука пациента должна покоиться на твердой поверхности, быть вытянута и наклонена немного вниз так, чтобы плечо и предплечье образовывали прямую линию. Необходимо следить, чтобы в момент взятия крови кулак пациента был разжат. Жгут следует накладывать не более чем на 1 — 2 минуты, тем самым обеспечивается минимальный стаз, при котором клетки крови не повреждаются. Игла должна быть достаточно большого диаметра и иметь короткий срез, чтобы не травмировать противоположную стенку вены во избежание тромбоза. После взятия крови необходимо приложить сухую стерильную салфетку к месту венепункции, а затем наложить давящую повязку на руку или бактерицидный пластырь.

Рационально применение пробирок для взятия венозной крови небольшого объема (4 — 5 мл) диаметром 13 и высотой пробирки 75 мм. Взятие венозной крови облегчается применением закрытых вакуумных систем, например, BD Vacutainer (R) производства компании Becton Dickinson. Под влиянием вакуума кровь из вены быстро поступает в пробирку (рис. 1 — не приводится), что упрощает процедуру взятия и сокращает время наложения жгута.

Вакуумная система состоит из трех основных элементов, соединяющихся между собой в процессе взятия крови: стерильной одноразовой пробирки с крышкой и дозированным содержанием вакуума, стерильной одноразовой двусторонней иглы, закрытой с обеих сторон защитными колпачками, и одно- или многоразового иглодержателя (рис. 2 — не приводится). Пробирки, входящие в закрытую вакуумную систему, содержат различные добавки и антикоагулянты, в том числе для проведения гематологических исследований. Метод взятия крови с помощью закрытых вакуумных систем имеет ряд преимуществ, основными из которых являются обеспечение высокого качества пробы и предотвращение любого контакта с кровью пациента, а значит, обеспечение безопасности медицинского персонала и других пациентов за счет существенного снижения риска заражения гемоконтактными инфекциями.

У некоторых пациентов может наблюдаться небольшая спонтанная агрегация тромбоцитов или реже так называемая ЭДТА-зависимая псевдотромбоцитопения (иммунного характера), причем эти явления прогрессируют по мере увеличения времени, прошедшего после взятия крови. У таких лиц точный подсчет числа эритроцитов может быть осуществлен при взятии крови с цитратом в качестве антикоагулянта.

Следует помнить, что применение в качестве антикоагулянтов гепарина или цитрата натрия сопровождается структурными изменениями клеток и поэтому не рекомендуется для использования как при автоматизированном, так и морфологическом исследовании крови.

Цитрат натрия в основном используется для определения скорости оседания эритроцитов (СОЭ) по методу Вестергрена или Панченкова. Для этого венозная кровь набирается в пробирки с 3,8% цитратом натрия в соотношении 4:1. С этой же целью может использоваться венозная кровь, взятая с ЭДТА (1,5 мг/мл) и затем разведенная цитратом натрия в соотношении 4:1. Сразу после заполнения пробирки кровью до указанного на ней объема пробу следует осторожно перемешать плавным переворачиванием и вращением пробирки в течение не менее 2 минут (пробирку с ЭДТА 8 — 10 раз, пробирку с цитратом натрия для определения СОЭ — также 8 — 10 раз) (рис. 3 — не приводится). Пробирки нельзя встряхивать — это может вызвать пенообразование и гемолиз, а также привести к механическому лизису эритроцитов.

Для кратковременного хранения и перемешивания проб крови существуют различные приспособления. Одним из наиболее удобных приспособлений является Ротамикс RM-1 фирмы ELMI (Латвия), который позволяет подобрать наиболее оптимальный режим перемешивания проб крови (рис. 4 — не приводится).

Капиллярная кровь. Для гематологических исследований капиллярную кровь рекомендуется брать в следующих случаях:

— при ожогах, занимающих большую площадь поверхности тела пациента;

— при выраженном ожирении пациента;

— при установленной склонности к венозному тромбозу;

Применение ватных тампонов и других волокнистых материалов не рекомендовано, поскольку это приводит к засорению волокнами счетных и гемоглобиновой камер. В результате точность и воспроизводимость измерения падает.

Первую каплю крови, полученную после прокола кожи, следует удалить тампоном, поскольку эта капля содержит примесь тканевой жидкости. Капли крови должны свободно вытекать, нельзя давить на палец и массировать зону вокруг прокола, так как при этом в кровь попадает тканевая жидкость, что существенно искажает результаты исследования. После взятия крови к раневой поверхности прикладывается новый стерильный тампон, смоченный 70° спиртом. Тампон следует удерживать, пока не прекратится кровотечение.

При прикосновении края пробирки к месту пункции капли крови начинают стекать в нее под действием капиллярного эффекта. После завершения сбора крови пробирку следует плотно закрыть. Необходимым условием для обеспечения качественной пробы является ее обязательное немедленное перемешивание с антикоагулянтом осторожным переворачиванием пробирки до 10 раз. В случае последовательного взятия капиллярной крови в несколько микропробирок необходимо соблюдать определенный порядок их заполнения. Последовательность взятия крови такова: в первую очередь заполняются пробирки с ЭДТА, затем с другими реактивами и в последнюю очередь заполняются пробирки для исследования сыворотки крови.

Читайте также:  Результаты гормонального анализа крови расшифровка

Основные рекомендации при работе с капиллярной кровью:

— При взятии крови в пробирку с антикоагулянтом не допускается стекание крови по коже пальца, стенке пробирки и любой другой поверхности, так как мгновенно происходит контактная активация прогресса свертывания.

— Кровь самотеком из прокола должна попадать прямо в антикоагулянт, перемешиваясь с ним.

— Нельзя выдавливать кровь из пальца во избежание спонтанной агрегации тромбоцитов и попадания в пробу большого количества межтканевой жидкости (тканевого тромбопластина).

Следует отметить, что при взятии капиллярной крови возможен ряд особенностей, которые бывает весьма трудно стандартизировать:

— физиологические — холодные, цианотичные пальцы;

— методические — малый объем исследуемой крови и в связи с этим необходимость разведения образца для анализа на гематологическом анализаторе и др.

Все это приводит к значительным разбросам в получаемых результатах и, как следствие, к необходимости повторных исследований для уточнения результата.

Доставка, хранение и подготовка проб к исследованию

Для обеспечения качественного результата исследований нужно четко контролировать время и условия хранения проб до выполнения анализа.

— Автоматизированное исследование крови необходимо проводить в промежутке 0 — 5 мин. или через 1 час и позже после взятия крови. В промежутке 5 мин. — 1 час происходит временная агрегация тромбоцитов, что может привести к их ложному снижению в пробе крови.

— Непосредственно после взятия крови исключается возможность спонтанной агрегации тромбоцитов, примерно 25 мин. необходимо для адаптации тромбоцитов к антикоагулянту. При анализе, проведенном позже чем через 6 — 8 часов после взятия образца, уменьшается достоверность результатов. Более продолжительное хранение крови не рекомендуется, т.к. изменяются некоторые характеристики клеток (сопротивляемость клеточной мембраны), снижается объем лейкоцитов, повышается объем эритроцитов, что в конечном итоге приводит к ошибочным результатам измерения и неправильной интерпретации результатов. Только концентрация гемоглобина и количество тромбоцитов остаются стабильными в течение суток хранения крови.

— Кровь нельзя замораживать. Капиллярную кровь с ЭДТА следует хранить при комнатной температуре и анализировать в течение 4 часов после взятия.

— При необходимости проведения отсроченного анализа (транспортировка на отдаленные расстояния, техническая неполадка прибора и т.д.) пробы крови хранят в холодильнике (4° — 8 °С) и исследуют в течение 24 часов. Однако при этом следует учитывать, что происходит набухание клеток и изменение параметров, связанных с их объемом. У практически здоровых людей эти изменения не носят критического характера и не сказываются на количественных параметрах, но при наличии патологических клеток последние могут изменяться или даже разрушаться в течение нескольких часов с момента взятия крови.

— Непосредственно перед исследованием кровь должна быть тщательно перемешана в течение нескольких минут для разведения антикоагулянта и равномерного распределения форменных элементов в плазме. Длительное постоянное перемешивание образцов на ротомиксе до момента их исследований не рекомендуется вследствие возможного травмирования и распада патологических клеток.

— Исследование крови на приборе проводится при комнатной температуре. Кровь, хранившуюся в холодильнике, необходимо вначале согреть до комнатной температуры, так как при низкой температуре увеличивается вязкость, а форменные элементы имеют тенденцию к склеиванию, что, в свою очередь, приводит к нарушению перемешивания и неполному лизису. Исследование холодной крови может быть причиной появления «сигналов тревоги» вследствие компрессии лейкоцитарной гистограммы.

— Приготовление мазков крови рекомендуется делать не позднее 1 — 2 часов после взятия крови.

При выполнении гематологических исследований на значительном удалении от места взятия крови неизбежно возникают проблемы, связанные с неблагоприятными условиями транспортировки. Тряска, вибрация, постоянное перемешивание, нарушения температурного режима, возможные проливы и загрязнения проб могут оказывать существенное влияние на качество анализов. Для устранения этих причин при перевозках пробирок с кровью рекомендуется использовать герметично закрытые пластиковые пробирки (BD Vacutainer (R) производства компании «Becton Dickinson», Deltalab, Sarstedt) и специальные транспортные изотермические контейнеры (фирма «Гем»).

Влияние преаналитических факторов, зависящих от пациента

На результаты гематологических исследований могут влиять факторы, связанные с индивидуальными особенностями и физиологическим состоянием организма пациента. Изменения клеточного состава периферической крови наблюдаются не только при различных заболеваниях, они также зависят от возраста, пола, диеты, курения и употребления алкоголя, менструального цикла, беременности, физической нагрузки, эмоционального состояния и психического стресса, циркадных и сезонных ритмов; климатических и метеорологических условий; положения пациента в момент взятия крови; приема фармакологических препаратов и др. Так, например, число эритроцитов и концентрация гемоглобина у новорожденных выше, чем у взрослых. С увеличением высоты над уровнем моря значительное повышение наблюдается для гематокрита и гемоглобина (до 8% на высоте 1400 м). Физические упражнения могут приводить к существенным изменениям числа лейкоцитов, обусловленным гормональными сдвигами. У больных при переходе из положения лежа в положение стоя показатели гемоглобина и число лейкоцитов могут увеличиваться на 6 — 8%, а показатели гематокрита и число эритроцитов возрастать на 15 — 18%. Этот эффект обусловлен переходом жидкости из сосудистого русла в ткани в результате повышения гидростатического давления. Выраженная диарея и рвота могут приводить к значительной дегидратации и гемоконцентрации. После регидратации наблюдается снижение гемоглобина и гематокрита, что может быть ошибочно принято за кровопотерю.

Для устранения или сведения к минимуму влияния этих факторов кровь для повторных анализов необходимо брать в тех же условиях, что при первом исследовании.

Автоматические счетчики крови оценивают размеры, структурные, цитохимические и другие характеристики клеток. Они анализируют около 10000 клеток в одном образце и имеют несколько различных каналов подсчета клеточных популяций и концентрации гемоглобина. На основании количества определяемых параметров и степени сложности их можно условно разделить на 3 основных класса:

I класс — автоматические гематологические анализаторы, определяющие до 20 параметров, включая расчетные показатели красной крови и тромбоцитов, гистограммы распределения лейкоцитов, эритроцитов и тромбоцитов по объему, а так же частичную дифференцировку лейкоцитов на три популяции — лимфоциты, моноциты и гранулоциты. К анализаторам I класса относятся гематологические анализаторы, поставляемые в рамках приоритетного национального проекта «Здоровье» в 2006 г. в клинико-диагностические лаборатории амбулаторно-поликлинического звена здравоохранения: MEK-6400J/K фирмы Nihon Kohden (Япония), Адвия 60 фирмы Bayer (Германия), COULTER Ac*T фирмы Beckman Coulter (Франция).

II класс — высокотехнологичные гематологические анализаторы, позволяющие проводить развернутый анализ крови, в том числе полную дифференцировку лейкоцитов по 5-ти параметрам (нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты), гистограммы распределения лейкоцитов, эритроцитов и тромбоцитов по объему, скатерограммы (Pentra-60, Cell-Dyn 3700, МЕК-8222).

III класс — сложные аналитические системы, выполняющие не только развернутый анализ крови с дифференцировкой лейкоцитов по 5 параметрам, но и подсчет и анализ ретикулоцитов, некоторых субпопуляций лимфоцитов; при необходимости комплектуются блоком для автоматического приготовления и окраски мазков из заданных образцов крови (Sysmex ХЕ-2100, Coulter LH750, Advia 2120, Pentra 120).

В основе работы анализаторов I-го класса лежит кондуктометрический метод. Анализаторы II и III-го классов используют в своей работе комбинации разных методов.

Кондуктометрические гематологические анализаторы

Технология автоматического подсчета клеток была разработана в 1947 г. Wallace Н. и Joseph R. Coulter. Апертуро-импедансный метод (метод Культера или кондуктометрический метод) основан на подсчете числа и определении характера импульсов, возникающих при прохождении клеток через отверстие малого диаметра (апертуру), по обе стороны которого расположены два изолированных друг от друга электрода. Если через узкий канал, заполненный электропроводящим раствором, проходит клетка крови, то в этот момент сопротивление электрическому току в канале возрастает (рис. 10 — не приводится). Несмотря на то, что изменение сопротивления невелико, современные электронные приборы легко его улавливают. Каждое событие — прохождение клетки через канал, сопровождается появлением электрического импульса. Чтобы определить концентрацию клеток, достаточно пропустить определенный объем пробы через канал и подсчитать число электрических импульсов, которые при этом генерируются.

Если в один и тот же момент в канале находятся две клетки, они регистрируются в виде одного импульса, что приведет к ошибке подсчета клеток. Во избежание этого, проба крови разводится до такой концентрации, при которой в канале датчика всегда будет не больше одной клетки.

Апертуро-импедансный метод позволяет определять большинство эритроцитарных и тромбоцитарных показателей, связанных с объемом клеток (НСТ, MCV, МСН, МСНС, MPV), а также является основой для дифференцировки лейкоцитов по трем параметрам.

Подсчет эритроцитов и тромбоцитов, расчет величины гематокрита, эритроцитарных и тромбоцитарных индексов

Разделение эритроцитов и тромбоцитов в современных анализаторах проводится по измерению амплитуды электрического сигнала: тромбоциты (небольшие по размеру клетки) при прохождении измерительного канала генерируют электрические импульсы низкой амплитуды, а сравнительно большие клетки — эритроциты и лейкоциты — импульсы высокой амплитуды (рис. 11 — не приводится). После лизиса эритроцитов в суспензии остаются лейкоциты. Из первого счета импульсов высокой амплитуды вычитают импульсы высокой амплитуды второго счета (лейкоциты). Разница импульсов высокой амплитуды до и после лизиса соответствует количеству эритроцитов — RBC (Red Blood Cells).

Устройство, которое разделяет импульсы по величине амплитуды, называется дискриминатор. В современных анализаторах применяются многоканальные дискриминаторы, позволяющие получить детальную информацию о размерах клеток в виде гистограмм, поскольку каждый канал соответствует определенному объему клеток.

При суммировании амплитуд импульсов, получаемых при подсчете количества эритроцитов, получается величина, отражающая общий объем, занимаемый эритроцитами, то есть гематокрит Hct (hematocrit). Разделив гематокритную величину на концентрацию эритроцитов (RBC), получается полезная характеристика эритроцитов — средний объем MCV (mean corpuscular volume).

Очевидно, что аналогичные показатели можно получить и для тромбоцитов: концентрация тромбоцитов — PLT (platelet), тромбокрит — РСТ (platelet crit), средний объем тромбоцитов — MPV (mean platelet volume).

Поскольку в норме концентрация эритроцитов в крови на 3 порядка превышает концентрацию лейкоцитов, то вклад лейкоцитов в общее количество подсчитываемых клеток пренебрежимо мал по сравнению с эритроцитами, поэтому в некоторых анализаторах за количество эритроцитов принимают общее подсчитанное количество клеток. Такое допущение справедливо, за исключением случаев явных лейкоцитозов.

Подсчет и дифференцировка лейкоцитов

Определение количества лейкоцитов возможно только после лизиса эритроцитов. Эта задача оказалась легко решаемой, так как свойства мембран эритроцитов и лейкоцитов существенно различаются. Эритроциты легко лизируются под воздействием многих поверхностно-активных веществ, при этом лейкоциты, хотя и претерпевают некоторые изменения, остаются целыми. Поэтому при подсчете лейкоцитов, прежде чем пропустить разведенную суспензию крови через апертуру датчика, к ней добавляют лизирующий раствор или гемолитик, эритроциты разрушаются до очень мелких фрагментов, которые при подсчете лейкоцитов генерируют электрические импульсы очень низкой амплитуды, не влияющие на результат анализа.

Разделение неизмененных лейкоцитов кондуктометрическим методом на основные субпопуляции невозможно в виду близости их объемов, однако можно подобрать такую композицию растворителя и гемолитика, что различные формы лейкоцитов претерпевают изменения размеров в разной степени и, благодаря этому, могут разделяться данным методом. Изменение объема клетки зависит от многих факторов, включающих величину и форму ядра, объем цитоплазмы, наличие внутриклеточных включений и т.д., поэтому размер трансформированных клеток не соответствует размерам клеток при визуальном просмотре их в окрашенном мазке крови (таблица 1)

Полученные после анализа лейкоциты распределяются на гистограмме следующим образом (рис. 12 — не приводится):

— Область малых объемов (35 — 90 фл) формируется лимфоцитами, которые под действием гемолитика значительно уменьшаются в объеме.

— Гранулоциты (нейтрофилы, базофилы и эозинофилы), напротив, подвергаются небольшому сжатию и расположены в области больших объемов (120 — 400 фл).

— Между двумя пиками имеется зона так называемых «средних лейкоцитов» (90 — 120 фл), которая лучше всего коррелирует с моноцитами (по этой причине в некоторых анализаторах клетки в этой области указываются как моноциты). Однако, учитывая тот факт, что коэффициент корреляции с моноцитами R = 0,5 — 0,8 сравнительно невысок, более корректным является название параметра «средние лейкоциты» или «средние клетки» (MID). Практически в область средних клеток могут частично попадать базофилы, эозинофилы, различные патологические формы.

Высокотехнологические гематологические анализаторы

Высокотехнологические гематологические анализаторы способны осуществлять дифференцированный счет лейкоцитов по 5-ти (5Diff) основным популяциям, используя различные принципы дифференцирования клеток: нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты, оценивать наличие незрелых гранулоцитов, анализировать ретикулоциты и их субпопуляции, проводить оценку стволовых гемопоэтических клеток и субпопуляций лимфоцитов. Многочисленные функции современных гематологических анализаторов стали возможны, благодаря развитию новых технологий, которые отличаются у разных фирм-производителей.

Так, в анализаторах фирмы Bekman-Coulter (LH 500, LH750) (США — Франция) используется трехмерный анализ дифференцировки лейкоцитов (VCS-технология), который включает в себя одновременный компьютерный анализ клеток по объему (Volume) (рис. 13 — не приводится), электропроводности (Conductivity) (рис. 14 — не приводится) и дисперсии лазерного света (Scatter) (рис. 15 — не приводится).

Полученные по трем каналам данные с помощью электроники комбинируются и анализируются, в результате чего происходит распределение клеток по дифференцировочным кластерам и, таким образом, лейкоциты разделяются на пять основных популяций: лимфоциты, моноциты, нейтрофилы, эозинофилы и базофилы (рис. 16 — не приводится). Результатом отображения объемного графика на плоскости является лейкоцитарная скатерограмма, на которой каждый тип клеток имеет свою зону расположения.

В анализаторах серии Cell-Dyn для дифференцировки лейкоцитов применяется технология MAPSS — Multi Angle Polarized Scatter Separation — мультипараметрическая система лазерного светорассеивания — регистрация интенсивности рассеивания клетками поляризованного лазерного луча под разными углами. Этот метод заключается в компьютерном анализе дисперсии лазерного счета клетками крови (рис. 17 (а, б) — не приводится). Рассеивание клеткой поляризованного лазерного луча под разными углами дает сведения о таких ее свойствах, как:

— размер клеток — для чего оценивается прохождение поляризованного лазерного луча под малым углом рассеивания (близким к 0°);

— структура и степень сложности клеток — оценивается по анализу рассеивания поляризованных лазерных лучей, направленных под углом до 7°;

— ядерно-цитоплазматическое соотношение — оценивается по анализу рассеивания поляризованных лазерных лучей, направленных под углом до 10°;

— оценка формы клеточного ядра — осуществляется благодаря анализу светорассеивания поляризованных лазерных лучей под углом 90°;

— для оценки клеточной зернистости и дифференцировки эозинофилов используется оценка светорассеивания деполяризованного луча под углом в 90°.

В приборах серии Technicon, ADVIA120, 2120, Pentra DX 120 разработан принцип жидкостной цитохимии (измерение активности пероксидазы в лейкоцитах), который в сочетании с другими методами (кондуктометрический, гидродинамическое фокусирование, оптическая абсорбция) позволяет проводить дифференцировку лейкоцитов. Использование пероксидазной реакции основано на различной ее активности в лейкоцитах. Так, эозинофилы и нейтрофилы имеют интенсивную пероксидазную активность, моноциты — слабую, в лимфоцитах она не выявляется.

Проточная цитохимическая техника включает регистрацию рассеянного и поглощенного светового луча. В лейкоцитарном канале после лизиса эритроцитов и стабилизации лейкоцитов происходит цитохимическая реакция, далее лейкоциты дифференцируются по двум признакам: размеру клеток, определяемому методом рассеивания лазерного луча, и пероксидазной активности — по поглощению клеткой светового потока (рис. 18 — не приводится). Дифференцировка базофилов от других гранулоцитов проводится в базоканале. Цитоплазма всех лейкоцитов за исключением базофилов подвергается лизису после обработки пробы специфическим лизатом. Затем в канале осуществляется измерение дисперсии лазерного света под углами 2° — 3° и 5° — 15°, что позволяет различить клетки в зависимости от формы ядер. (Рис. 19 — не приводится.)

Сравнивая информацию, получаемую с Perox- и Baso-каналов, компьютер осуществляет дифференцировку лейкоцитов на 5 основных популяций, а также сигнализирует в виде флагов о присутствии в крови активированных лимфоцитов, незрелых гранулоцитов, бластов, эритробластов.

В гематологических анализаторах серии XT и ХЕ фирмы Sysmex применяется метод проточной цитофлюориметрии с использованием флюоресцентного красителя полиметина. Этот флюоресцентный краситель связывается с ДНК и РНК неизмененных клеток, что позволяет использовать его как для дифференцировки лейкоцитов по 5-ти параметрам (нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты), так и для подсчета ретикулоцитов (рис. 20 — не приводится).

Анализ клеток происходит в проточной кювете при пересечении луча лазера длиной 633 нм (рис. 21 — не приводится). После контакта лазерного луча с окрашенной клеткой происходит рассеивание последнего под большим и малым углами и возбуждение флюоресцентного красителя. Данные сигналы улавливаются фотоумножителями и регистрируются в виде трех параметров (рис. 22 — не приводится):

1. Светорассеивание под малым углом (FSC) — отклонение лазерного луча под малым (до 10°) углом, которое зависит от размера (объема, только при условии сферической формы частицы) и формы клетки;

2. Боковое светорассеивание (SSC) — рассеивание под углом до 90° зависит от рефрактерного индекса (или плотности) клетки и характеризует сложность внутриклеточных структур;

3. Детекция специфического флюоресцентного сигнала (SFL), которая регистрируется также как боковое светорассеивание под углом 90° и позволяет судить о содержании РНК/ДНК в клетках.

На основании полученных сигналов все клетки распределяются по соответствующим кластерам (зонам) в соответствии с их размером, структурой и количеством ДНК (рис. 23 — не приводится). Таким образом, происходит дифференцировка лейкоцитов на 4 популяции: лимфоциты, моноциты, эозинофилы и нейтрофилы вместе с базофилами (рис. 24 — не приводится).

Разделение нейтрофилов и базофилов происходит в базоканале, где используется метод специфического химического лизиса, основанный на предварительной обработке лейкоцитов реактивом, осуществляющим лизис всех клеток, за исключением базофилов (рис. 25 — не приводится), с последующим дискриминантным анализом всех элементов по размеру и сложности структуры и количеству ДНК (рис. 26 — не приводится).

Кроме того, приборы оборудованы каналом для выделения незрелых гранулоцитов и атипичных лимфоцитов.

Таким образом, использование приборов с полным дифференцированным подсчетом лейкоцитов (5Diff) позволяет повысить точность дифференциального подсчета лейкоцитов, провести скрининг нормы и патологии, динамический контроль за лейкоцитарной формулой и резко сократить ручной подсчет лейкоцитарной формулы, оставляя примерно до 15 — 20% образцов крови для световой микроскопии.

Читайте также:  Биохимический анализ крови что такое коагулограмма мно

В гематологических анализаторах к методам определения гемоглобина предъявляется ряд специфических требований. Во-первых, время реакции должно быть в десятки раз меньше для обеспечения высокой производительности анализаторов. Во-вторых, для оптимизации конструкции анализаторов гемоглобин должен измеряться в том же гемолизате, который используется для подсчета лейкоцитов, и, следовательно, компоненты, обеспечивающие гемоглобиновую реакцию, не должны негативно влиять на подсчет лейкоцитов.

Учитывая недостатки модифицированных гемиглобинцианидных методов, в последние годы в большинстве новых моделей гематологических анализаторов используются бесциановые методы. Одной из первых бесциановый SLS (натрий лаурил сульфат)-метод использовала фирма Sysmex. Этот метод оказался не совместимым с определением лейкоцитов в одном канале, для его реализации используется дополнительный реагент и канал измерения.

Оптимальной областью фотометрирования является максимум спектральной кривой поглощения. Для гемиглобинцианида — это 540 нм (рис. 27 — не приводится), которая и есть рабочая длина волны для этого метода. Измерение в максимуме кривой, где смягчаются требования к точности установки длины волны, снижает требования к точности изготовления и стабильности оптических фильтров. Максимум кривой поглощения гемихрома находится на длине волны 533 нм. Однако измерение на этой длине волны возможно только в спектрофотометрах. В фотометрических ячейках гематологических анализаторов, как правило, применяются полосовые светофильтры с типовыми длинами волн. Ближайшая к 533 нм типовая длина волны 540 нм, на которой и проводится фотометрирование с учетом коэффициента пересчета для 540 нм. При переходе с цианового на бесциановый метод, как правило, требуется корректировка калибровки гемоглобина в пределах 0 — 5%.

Качество результатов исследования крови на гематологическом анализаторе определяется следующими факторами:

— точностью дозирования цельной или разведенной крови;

— точностью дозирования изотонического раствора при проведении процедуры разведения крови;

— точностью определения объема суспензии, пропущенного через датчики подсчета клеток;

— точностью самого подсчета клеток;

— точностью определения размеров клеток;

— корректностью математических методов обработки первичных результатов измерений.

Во избежание случаев несовместимости реагентов следует использовать изотонический раствор и гемолитик от одного изготовителя. При смене реагентов одного производителя на реагенты другого производителя необходимо проверить калибровку анализатора по контрольной крови, обращая особое внимание на Hb и MCV/HCT, и при необходимости нужно делать перекалибровку этих показателей. Калибровка других показателей, как правило, не меняется.

При эксплуатации гематологических анализаторов важную роль играет качество электрической сети и заземления. Внезапное отключение электропитания приводит к сбоям в работе приборов и необходимости вмешательства инженеров сервисной службы. В том случае, если электрическое питание пропадает в момент забора пробы или анализа и появляется спустя несколько часов (5 — 20 ч), последствия могут оказаться значительно более серьезными — может выйти из строя гидравлика, засориться сгустками крови капиллярные трубки, апертура и т.д. Поэтому прибор должен работать с источником бесперебойного питания, который должен обеспечить возможность окончания анализа и промывку прибора, т.е. работу прибора в течение нескольких минут.

Периодически необходима калибровка по стандартным материалам, так как электронные и механические компоненты прибора, датчиков, насосов и т.д. со временем подвергаются старению и меняют свои технические параметры. Для осуществления калибровки необходимо пользоваться только качественными контрольными материалами!

Гематологические анализаторы очень чувствительны к длительным отключениям и перебоям в работе, что связано с подсыханием шлангов, проростом микрофлоры, кристаллизацией из растворов. При длительной остановке (на период отпуска, переезда или отсутствия реагентов) обязательным является заполнение шлангов консервирующими растворами с последующей многократной отмывкой от них.

Общее правило — не прерывать работу гематологического анализатора на длительный срок.

Автоматизированные гематологические анализаторы, поставляемые в КДЛ в рамках Приоритетного национального проекта «Здоровье»

Для оснащения клинико-диагностических лабораторий поликлиник предпочтение отдано автоматизированным гематологическим анализаторам, работа которых основана на кондуктометрическом методе, который позволяет получить до 18 параметров крови с определением трех популяций лейкоцитов (лимфоциты, клетки средних размеров, гранулоциты).

При использовании такого анализатора определяют:

— RBC (количество эритроцитов)

— HGB (концентрация гемоглобина)

— MCV (средний объем эритроцита)

— МСН (среднее содержание гемоглобина в эритроците)

— МСНС (средняя концентрация гемоглобина в эритроците)

— RDW (ширина распределения эритроцитов по объему)

— PLT (количество тромбоцитов)

— MPV (средний объем тромбоцита)

— PDW (ширина распределения тромбоцитов по объему)

— WBC (количество лейкоцитов)

— GR (гранулоциты, % и # — относительное и абсолютное количество)

— LY (лимфоциты, % и # — относительное и абсолютное количество)

— МО (моноциты, % и # — относительное и абсолютное количество)

Гистограммы (распределение клеток по объему)

Автоматизированный гематологический анализатор MEK-6400J/K

Прибор производства фирмы Nihon Kohden Corporation, Япония, определяет 18 параметров крови (рис. 28 — не приводится).

В приборе существует пять режимов разведения: нормальный, режим низкого, высокого и очень высокого разведения, режим предварительного разведения.

В нормальном режиме разведения измеряется образец объемом 30 мкл.

Для режимов измерения крови с предварительным разведением можно указать объем исследуемой крови (10 или 20 мкл). Этот режим удобен при работе с малым объемом крови, особенно у детей и пожилых людей.

При наличии лейкоцитоза образец крови может быть измерен в режиме высокого или более высокого разведения. В режиме высокого разведения образец крови объемом 10 мкл разводится втрое больше обычной пропорции разведения. В режиме более высокого разведения 5 мкл образца крови разводится в пропорции, в шесть раз большей обычной пропорции разведения.

В случаях низкого содержания в крови лейкоцитов и тромбоцитов образец измеряется в режиме низкого разведения, при котором 55 мкл крови разводится в пропорции, вдвое меньшей обычной пропорции. Пересчет с высоким/низким разведением недоступен для образцов в режиме предварительного разведения.

В анализаторе предусмотрено два типа автоматического пересчета клеток крови — при наличии сигналов тревоги («флагов») и при тромбоцитопении. При этом автоматически производится двойной подсчет образца крови, выводятся и сохраняются средние значения исследуемых параметров. В случае серьезных отклонений (более 10%) между показаниями двух подсчетов автоматически выполняется третий и используется среднее значение двух самых близких по значениям подсчетов. При тромбоцитопении анализатор также автоматически производит пересчет образца, при этом пересчитываются также такие показатели, как RBC, НСТ, PLT, MCV, РСТ, МСН, МСНС и RDW. Оператор может самостоятельно установить порог, при котором происходит повторный счет клеток крови (например, 50,000/мкл, либо 100,000/мкл).

Прибор снабжен системой закодированных флагов, которые появляются на экране при наличии отклонений в измерении или изменении гистограмм распределения клеток. Следует внимательно изучить названия флагов, т.к. они помогают определить возможные причины их появления. Помимо количественных характеристик клеток крови в анализаторе отображается распределение клеток по объему в виде гистограмм, анализ которых имеет диагностическое значение.

Время исследования крови в закрытом режиме — примерно 90 сек./образец (от начала измерения до вывода данных), в открытом режиме — 60 сек.

Гематологический анализатор MEK-6400J/K сохраняет в памяти данные подсчета 400 образцов крови и гистограммы последних 50 образцов. Результаты гематологического исследования могут быть автоматически распечатаны на принтере или переданы на персональный компьютер. В анализаторе предлагается несколько автоматических программ контроля качества, полученные данные могут быть выведены и распечатаны в виде таблиц и графиков для каждого исследуемого параметра.

Гематологический анализатор ADVIA 60

Прибор, поставляемый фирмой BAYER, — автоматический гематологический анализатор с возможностью исследований цельной крови по 18 параметрам с производительностью до 60 проб в час (рис. 29 — не приводится). Прибор позволяет проводить дифференцирование популяции лейкоцитов по трем группам в процентном и абсолютном значениях.

Малый объем цельной крови, требуемый для анализа (10 мкл), делает прибор удобным для работы с детьми, так как позволяет провести процедуру отбора крови наименее травматично и наиболее точно с использованием капилляров и микропробирок с антикоагулянтом (ЭДТА).

Реагенты упакованы в герметичные пакеты с клапанами, объединенные в единый картридж (TimePac), что препятствует взаимодействию с атмосферным воздухом, защищает реагенты от повреждений и загрязнений, сохраняет стабильность (рис. 30 — не приводится). За один цикл измерения прибор выполняет до 3 подсчетов клеток для обеспечения необходимой точности исследования пробы. Прибор обеспечивает высокую стабильность калибровки до нескольких месяцев.

ADVIA 60 имеет возможность хранения данных калибровки, контроля качества исследований и результатов исследований крови пациентов. Распечатка результатов анализов с гистограммами и карты контроля качества производится на стандартном внешнем матричном принтере. Имеется возможность отображения флагов патологических образцов и ошибок счета, а также ввода и распечатки лабораторных норм.

Прибор ADVIA 60 долгое время присутствует на рынке лабораторного оборудования под маркой разных производителей, он зарекомендовал себя как надежный, простой в обращении и обслуживании анализатор, подходящий для разных клинико-диагностических лабораторий в качестве основного или дополнительного гематологического анализатора.

Гематологический анализатор COULTER Ас*Т

Данная модель автоматического гематологического анализатора обеспечивает исследование крови по 18 параметрам, включая дифференцировку лейкоцитарной формулы по трем основным популяциям (лимфоциты, моноциты, гранулоциты) и получение гистограмм распределения по размерам клеток для эритроцитов, тромбоцитов и лейкоцитов.

Применяемые технологии и методы исследования:

— Метод Культера для подсчета и определения размеров клеток;

— Трехкратный подсчет каждого образца;

— Запатентованный метод «SWEEP FLOW» (уносящего потока) для предотвращения повторного счета клеток при анализе образца;

— Непрерывный автоматический мониторинг состояния апертур;

— Продленный по времени счет тромбоцитов в случае их низкой концентрации в образце.

Простое и удобное управление анализатором, использование интернациональных символов при выборе режимов исследования позволяют работать на данной системе операторам с разным уровнем подготовки. Автоматическая очистка иглы пробоотборника, система автоматической промывки, мониторинг состояния апертур, отсутствие необходимости в ежедневном обслуживании обеспечивают повышенную надежность работы системы и уровень безопасности для оператора, гарантируют точность получаемых результатов.

Для анализатора предлагается полностью готовая к использованию система реагентов компании Beckman Coulter Inc.: diff Ac*T Pak (изотонический и лизирующий раствор) и Ас*Т RINSE (раствор для промывки системы). К набору реагентов diff Ac*T Pak прилагается специальная программная карта, которая используется при инициации новой упаковки реагентов и может быть использована для хранения контрольных данных.

Для мобильных лабораторий компания Beckman Coulter предлагает специальный набор реагентов diff Ac T Tainer, который включает все необходимые компоненты — изотонический, лизирующий и промывающий раствор.

Для проведения контрольных испытаний компанией предлагаются два типа контрольных реагентов — 4С Plus Cell Control и 4С ES Cell Control.

Система управления данными

— Автоматическое или ручное присвоение цифрового кода пациенту.

— Три определяемых пользователем диапазона нормальных значений для анализа разных групп пациентов.

— Хранение в памяти прибора результатов анализов до 250 образцов.

— Хранение данных контроля качества по трем уровням контрольных образцов.

Представленные данные основаны на результатах 31 повтора одного образца.

Гемоглобинометр фотометрический портативный «МиниГЕМ»

Рис. 33. Гемоглобинометр фотометрический портативный для измерения общего гемоглобина в крови гемиглобинцианидным методом АГФ-03/540-«МиниГЕМ», торговая марка «МиниГЕМ 540».

Гемоглобинометр МиниГЕМ 540 представляет собой специализированный фотометр, предназначенный для определения общего гемоглобина крови гемиглобинцианидным методом с фотометрированием на длине волны 540 нм.

Диапазон измеряемой прибором оптической плотности составляет от 0 до 0,9 Б, что соответствует концентрации общего гемоглобина крови от 0 до 360 г/л. В приборе используется стандартная пробоподготовка — 20 микролитров крови, разведение 1:250. Суммарная погрешность определения гемоглобина (с учетом погрешностей дозаторов и погрешностей биохимического метода), полученная при сравнительных медицинских испытаниях, не превышает 2% (коэффициент вариации) во всем диапазоне измеряемых концентраций. При этом собственная погрешность гемоглобинометра как фотометра — не более 1%, а воспроизводимость, оцененная по коэффициенту вариации, — не более 0,25%.

Гемоглобинометр МиниГЕМ 540 является средством измерения медицинского назначения. Он проходит первичную поверку при выпуске с завода-производителя, которую производит Ростест-Москва. Поверка прибора в эксплуатации осуществляется по инструкции, утвержденной ВНИИОФИ в феврале 2005 года.

Главной отличительной особенностью гемоглобинометра МиниГЕМ 540 является то, что он не требует периодических калибровок, сохраняет заводскую калибровку неограниченно долго, в том числе при отключении питания.

Два фактора обеспечивают это качество прибора:

1. Высокая воспроизводимость характеристик раствора гемиглобинцианида, который сохраняет свои свойства при надлежащем хранении долгие годы, в том числе коэффициента пересчета оптической плотности в концентрацию гемоглобина (или фактора калибровки).

2. Конструкция гемоглобинометра МиниГЕМ 540 обеспечивает высокую надежность фотометрических параметров прибора. МиниГЕМ 540 снабжен функцией саморегулирования, он обладает многолетней стабильностью измерений.

Другая отличительная особенность гемоглобинометра — полностью автоматизированная процедура фотометрирования.

Для определения гемоглобина достаточно опустить кювету с фотометрической пробой в прибор, и через мгновенье на дисплее отобразится значение концентрации. Пересчет оптической плотности раствора в концентрацию производится автоматически. Перед измерением прибор не нужно включать, «прогревать», подстраивать или калибровать. Гемоглобинометр автоматически выключится при вынимании кюветы до следующего измерения.

Третья особенность гемоглобинометра МиниГЕМ 540 — его портативность и низкое энергопотребление.

Корпус прибора, выполненный из светлого химически стойкого пластика, имеет размеры 178 х 128 х 43 мм. Масса прибора без батарей не превышает 300 граммов. Питание от сети через адаптер или от встроенных батарей. Ресурс батарей — 1000000 измерений или 4 года работы.

Для контроля работоспособности гемоглобинометра используется контрольная стеклянная мера, паспортизованная для каждого прибора.

Внутрилабораторный и внешний контроль качества может проводиться с помощью обычных контрольных материалов — контрольных растворов гемоглобина.

1) Подготовить пробирки, поместив в каждую из них по 5 мл трансформирующего раствора (раствор Драбкина).

2) Во время взятия крови в каждую пробирку перенести по 20 мкл капиллярной крови и тщательно перемешать раствор.

3) Через 20 минут (время лизирования) провести серию измерений. Для этого:

а) перелить в оптическую кювету реакционную смесь из очередной пробирки;

б) опустить оптическую кювету в фотометрическую ячейку прибора, при этом автоматически произойдет фотометрирование реакционной смеси, сопровождаемое звуковым сигналом, и на индикаторе появится число, соответствующее концентрации гемоглобина.

4) Записать результат измерения.

Гематологические анализаторы позволяют не только автоматизировать процесс подсчета клеток крови, повысить производительность труда в лабораториях, улучшить качество и точность измерения, но и получить дополнительные, высоко информативные характеристики клеток крови. Для правильной их интерпретации специалисты клинической лабораторной диагностики, а также врачи других специальностей должны иметь представление о нормальном кроветворении, знать клиническую симптоматику различных заболеваний и патологических процессов, возможные причины, приводящие к отклонениям в гемограмме, ориентироваться в системе расстановки флагов, имеющейся в каждом анализаторе, гистограммах и скатерограммах. При анализе гемограммы следует учитывать возможные причины ложных результатов. Только в этом случае можно профессионально прокомментировать и при необходимости помочь клиницистам в интерпретации полученных результатов исследования крови.

Любые изменения общего анализа крови трактуются как патологические и требуют тщательного обследования пациента. Изменения в гемограмме при многих заболеваниях могут иметь неспецифический характер. В этих случаях их используют для динамического наблюдения за больным, а также по ним ориентируются при прогнозировании исходов заболевания. При системных заболеваниях кроветворной системы исследование общего анализа крови приобретает первостепенное диагностическое значение. Оно определяет дальнейшую стратегию обследования пациента с последующим выбором схемы лечения и необходимо для мониторинга проводимой терапии.

В гематологических анализаторах различных фирм-производителей нормальные показатели крови могут существенно варьировать в зависимости от норм, используемых в той или иной стране. Следуя инструкции прибора, перед началом работы на анализаторе рекомендуется изменить их в соответствии с нормами, принятыми в нашей стране (таблица 3).

Присутствие криоглобулинов может вызвать увеличение WBC, RBC или PLT и концентрации HGB. В таких случаях следует прогреть образец крови до 37 °С в течение 30 минут и немедленно провести измерение. Криоглобулинемия может наблюдаться у больных миеломой, макроглобулинемией Вальденстрема, злокачественными новообразованиями, лейкозом, лимфопролиферативными и аутоиммунными заболеваниями, вирусным гепатитом, сахарным диабетом.

Агглютинация эритроцитов может привести к занижению показателей RBC, увеличению MCV. Это можно проверить по повышенным значениям МСН и МСНС

Нормобласты (NRBC) — большинство гематологических анализаторов подсчитывает все ядросодержащие клетки, поэтому при наличии нормобластов в периферической крови они определяются как лейкоциты и могут быть причиной увеличения WBC и лимфоцитов, т.к. нормобласты имеют размер малого лимфоцита. В этих случаях необходим строгий визуальный контроль и коррекция истинного количества лейкоцитов.

В анализаторах фирмы Sysmex (ХЕ-2100, ХТ-2000i) и Bayer (ADVIA 2120) при наличии нормобластов в крови коррекция лейкоцитов проводится автоматически. Следует отметить, что порог чувствительности определения нормобластов в анализаторе Sysmex XE-2100 составляет менее 20/мкл, что с помощью микроскопического исследования определить представляется невозможным.

HGB (hemoglobin) — концентрация гемоглобина (г/дл или г/л) в большинстве гематологических анализаторов определяется фотометрически гемиглобинцианидным или гемихромными методами. Коэффициент вариации при этом не превышает 2%.

Основные причины завышения результатов определения гемоглобина обусловлены мутностью образца крови, которая может быть следствием:

— Гиперлипидемии и гипербилирубинемии, приема жирной пищи. Различное влияние липидемии на определение гемоглобина в приборах связано с техническими особенностями, а не с методологией. Величина результирующей ошибки сильно зависит от оптической системы прибора: размера выходного отверстия из кюветы для образцов и расстояния до фотодиода.

В общих случаях измерение HGB на анализаторах уступает по точности определению гемоглобина ручным методом. Наиболее надежные результаты определения концентрации гемоглобина гемиглобинцианидным методом могут быть получены на спектрофотометре или фотометре при добавлении в холостую пробу 20 мкл сыворотки крови больного.

— Присутствия нелизированных эритроцитов.

— Гиперлейкоцитоза. Для снижения ошибки измерения рекомендуется обработать кровь лизатом, отцентрифугировать образец и провести измерение гемоглобина в надосадочной жидкости фотометрическим методом.

В зависимости от концентрации гемоглобина выделяют три степени тяжести анемии: легкую (HGB > 90 г/л), среднюю (HGB 70 — 90 г/л), тяжелую (HGB Метки: Методические рекомендации, Минздравсоцразвития России, Рекомендация

источник